Daguerreotype hallmarks

Gabriele Chiesa & Paolo Gosio
Gabriele Chiesa e Paolo Gosio

Daguerreotype hallmarks

1st Edition, rev. 11.07.2020
112 pp. B5, 176 x 250 mm

GGKEY: X17XADY8W1L

© 2020 by Gabriele Chiesa & Paolo Gosio. Some Rights Reserved.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

The hallmarks reproduced on the cover, as well as all the illustrations in this book, come from the Chiesa-Gosio collection.
Layout, graphics and texts by Gabriele Chiesa. The provided illustrations are property of the authors except the hallmarks scans listed at pag. 108.
The reproduction of the daguerreotype “Boulevard du Temple” by L.J.M. Daguerre is a electronically processed version of the file declared as public domain on https://it.wikipedia.org/wiki/File:Boulevard_du_Temple_by_Daguerre.jpg

Finished composing in Brescia, Italy, the April 6th, 2020.
200th anniversary of the birth of Gaspard-Félix Tournachon (Nadar).

http://www.gri.it
http://www.fotocollezione.it
http://storiadellafotografia.blogspot.com
Gabriele Chiesa e Paolo Gosio

Daguerreotype hallmarks

speculum

memoriae

G P
We thank all the people who have contributed to the research for their precious collaboration: Bálint Flesch, Elvira Tonelli, Daniele Buraia, Luisa Bondoni and the whole team at the Museum of Photography in Brescia (Italy).

A very special thanks go to my friend, the collector and historian of photography, Michael G. Jacob who kindly offered his help. He read and commented on my English in an attempt to render the translation more presentable. I apologize for the improprieties that still persist.

A special thanks goes to the friends of “The Daguerreian Society” and other collectors or curators of various institutions who have reported new daguerreotype hallmarks, thus enabling to expand the identification table. Among these I would like to mention: Alan Griffiths, Sean Nolan, Terry Alphonse, Melanie Martin, Wouter Lambrechts, John S. Rochon, Jan Kaye Pentz, Thomas Kennaugh, Marco Cimini, Oriana Orsi, Jason Wright and Christopher Wahren.
Preface

Introductory note from the authors

This publication stems from the enthusiasm of Gianpaolo (Paolo) Gosio and Gabriele Chiesa for the history of early photographic processes. This text aims to contribute to the identification and classification of the hallmarks that can be observed on historical daguerreotypes.

Hallmarks impressed on the original plates can provide precious information on the area of origin of the daguerreotypes, on the producer, on the eventual importer and sometimes also on the photographic studio of origin and on the date of production. Most daguerreotypes have long been considered anonymous. The hallmarks impressed on the plates tell a different story and open the way to consider the signed daguerreotypes.

The book deals with the trademarks used in association with the daguerreotype, the photographic process by means of which the portrait, a privilege reserved until 1839 to the rich and nobility, became a testimony of life, presence and memory for the common people.

The illustrations come from the personal collections of the authors. This book also offers tables for the identification and classification of hallmarks that were used by the manufacturers of daguerreotype plates, importers and photographic studios.

A book like this that comes from research and studies can never claim to be the definitive account of the subject.

New information appears regularly which gradually extends and enriches our sources, particularly with the advent of internet, and this clearly and necessarily entails new additions, corrections and in-depth analyzes.

This aspect will be particularly true for the tables of hallmarks, which enable us to identify and clarify individual manufacturers of daguerreotype plates, their country of origin and period of activity.

The authors would like to thank in advance the scholars of photographic history and culture and all those who come forward with new information. Their precious collaboration will enable us to keep future editions of this publication up to date.

The identification table is available online, but not with the photographic reproductions that are present in this book.

This will be kept updated as far as reasonably possible by the authors.

The individual contributors and their material will be mentioned by name with acknowledgements to the owners of illustrations where necessary.

http://www.gri.it/daguereotype-hallmarks-punzioni.html
Images constitute a fundamental element of the memory process. Efforts to conserve images were made by our very earliest ancestors on the walls of their cave dwellings.

Throughout history, efforts to make visible representations of reality have engaged multiple cultures and diverse technological means. Over thousands of years gifted individuals have mastered a technology that combines instruments and materials to express and create faithful representations of scenes and events, both real and imagined, using their own creativity and artistic abilities. Photography is the means by which light itself is used to register scenes from the world that surrounds us, using technically controlled means in a continual evolution.

This medium no longer depends exclusively on the artistic ability of the operator but on the mutation of technology and of the appearance of the subject under observation. It is the physical characteristics of the subject, its volume and the manner in which it reflects light, that determines the qualities of the image to be registered.

In the retina of our eyes images dissolve continuously but the light emanating from what we see can be registered permanently on certain photo-sensitive materials. Various chemical products are used with supportive materials to create a permanent visible memory of what we or others once saw for a fraction of a second.

This ephemeral moment, captured through rays of light that disappear instantly, remains fixed in time by a chemical and physical process defined as “analogical.” The light and shadows reflected from a subject can be transferred to a sheet of paper, as permanently as if they had been imposed by an ink covered rubber stamp.

Early photography involved the use of salt of silver to reproduce scenes from daily life by capturing them in an instant on prepared photo-sensitive surfaces. The unique, non-reproducible aspect of these early processes such as the daguerreotype is in net contrast with the instant mass reproduction capacity of modern photographic equipment. In our day and age a complex chain of physical transformations can produce an ephemeral image on display, universally known as “digital.”

In an era when visual memory is increasingly entrusted to a physically inexistent form (the digital), the tactile magic of the object itself (the analogical) takes us back to a period in history when existence was measured by physical form and actual presence.
An invention born at the window

Towards the end of the 18th century there was already in place a clear understanding of the mechanical and optical devices needed to reproduce an image. The properties of salt of silver and its reactions when exposed to light had been experimented.

Two significant problems remained, the conversion to a positive image and the means of fixing it to a support.

The pioneers of photography continued to be frustrated at the negative images produced by salt of silver. The effect which would later be considered the most important step in the photographic process was initially seen as an insurmountable barrier to the realization of pictures.

In a letter written on the 15th of March, 1816, Joseph Niépce wrote to his brother:
« It turned out as I expected, the background of the image is black and the subjects are white, much lighter than the background. Perhaps it would be not impossible to change the disposition of the colours.... »

A few weeks later he returns to the difficulties of “transposing the colours” and links this problem to that of stabilising the image on its support.
In a third letter he is still complaining about the results he has obtained.
« The effect would be more pleasing if it were possible to invert the disposition of light and shade. This is the task I have to do before I attack the problem of fixing the colours, but it is not easy. »

The disappointments led him to abandon silver chloride, which was then known as “silver muriate,” (muria is salt water in Latin). This decision was communicated to his brother on the 20th of April, 1817. Niépce also gave up on the difficulties of stabilising the image, « I think that this type of image will alter in time even if it is not exposed to sunlight. »

The inversion of light, which Niépce considered as an unnatural phenomenon, caused him to change direction, experimenting with other photo-sensitive materials that became lighter rather than darker, under the effects of light. This line of experimentation gave him only partial or unsatisfactory results.
However these research studies were determinants in the path that eventually led to the discovery of photomechanical processes.

Niépce and Daguerre did not have a precise idea of “what needed to be invented.” They had never seen a photograph and therefore they had no idea of what their final result could looks like.
Both, like other experimenters who were moving in the same field, knew what the printing was and how the lithographic reproduction of images worked.
For this reason the support they had chosen was a perfectly polished metal plate, on which a photosensitive substance could alter itself to light and become an inked layer.

Niépce and Daguerre tried to obtain a printing plate. As a result of this they did not use paper, good for photogenic copying results already widely known. It’s starting from perfectly smooth and shiny metal plates that you get printed images.

Bitumen of Judea or Syrian asphalt, is a substance which has many of the properties required by Niépce, being photo sensitive and soluble in lavender oil. When exposed to light for a proper time it becomes insoluble and in the mind of the French scientist there was a hope that the plate could serve as a sort of inking matrix suitable for multiplying visual information with ink-based reproduction.

The Niépce’s window

The invention of photography was born from the views taken from four different windows.

Even today, normally, those who buy a new camera immediately test the device from the position that is immediately more comfortable and natural: the window of their home.

We can easily imagine that the choice to operate the window was an indispensable requirement for those who were still painstakingly conducting experiments with not easy handling instruments and materials that required complicated preparations and the use of various chemicals that had to be at hand in a room that may be darkened if required.

The window could not therefore be other than that of the room also used as a laboratory, so it was easy to repeat the tests by introducing new variations to the process.

All that Niépce achieved was a few pewter plates in which, by looking at them in strong sidelight conditions, one might glimpse faintly a rather confused image. A representation of the house roofs visible from the window of his country house in Le Gras, Saint-Loup-de-Varennes, is the oldest evidence we have of his efforts and this is what is now generally accepted as “the world’s first photograph”

To observe this pewter plate image is not an easy enterprise; it has to be done in a dark room with a close sidelight light. This is quite far from what we would describe today as an acceptable photograph.

The best known representation of this first photograph, that is the image commonly proposed by the books, is actually a copy retouched by H. Gernsheim in watercolor of a reproduction taken from the original plate “Point de vue du Gras” and performed in 1952 by P.B. Watt at Kodak Research Laboratories with 30 ° inclination, side lighting and high-contrast film.
However, this first result, a plate exposed to sunlight of about 16 x 20 centimetres, dates from circa 1826, according to the photographer and historian, Helmut Erich Gernsheim, (Munich, 1913- Lugano, 1995).

However, there exists a letter, written by Niépce to his nephew, Claude Felix Abel Niépce de St Victor, (Paris F, 1805-1870,) on the 16th of September, 1824. It reads:

« I have managed to take a picture of nature which is so good that I could not hope for better, but I mustn't gloat about it because my experiments are still incomplete. This image was taken from your room, facing towards Le Gras, using my largest CO ("camera obscura") and my biggest size of plate. The image shows objects perfectly clearly and accurately in all the most fine and delicate details.

Since this matrix is very faintly dyed, the effect can only be assessed by observing the stone obliquely; in this way the picture becomes visible with its effects, shadows and reflections of light. I can assure you that this result you will see magic before your eyes. »

We can appreciate that the enthusiasm of Niépce is notable, although he admits that the product itself is not entirely satisfactory, but it sufficed to attract the interest of another activist in the field, Louis Jacques Mandé Daguerre (Cormeilles-en-Parisis, 1787 - Bry-sur-Marne, 1851).

In the autumn of 1825 Niépce acquired a lens from Vincent Jacques Louis Chevalier (Paris 1770-1841,) the owner of an old studio at Paris that furnished optical instruments. At that time there was no lens specifically designed for “camera obscura” use and the pioneers of photographic research were forced to utilise whatever lenses were available.

The indiscrete person who was sent to pick up the lens for Niépce spoke freely about the work he was doing and consequently Charles Louis Chevalier, (Paris, 1804-1859,) the son of the optical instrument dealer told Daguerre all about it.

Daguerre was also a customer of the Chevalier studio as it was here that he bought equipment to make his perspective paintings for the “Diorama” show and for his own “photographic” experiments.

He wasted no time in contacting Niépce and a difficult meeting was followed up by a largely unsuccessful association between the two men. A legal contract was drawn up but this lapsed with the death of Niépce.

Daguerre had the fortunate idea of continuing the experiments with the silver plated copper plates, a line of research by that time abandoned by his former partner.

The decisive discovery turned out to concern the effect produced by the vapour of mercury on the area of the support plate more exposed to sunlight.

The plates that had been treated with iodine vapour now showed a thin coat of molecules of silver iodide that could be slightly affected by sunlight.

It is the mercury vapour which mixes with free silver, released for chemical reduction in lighted areas, producing a white amalgam.
This process constitutes a development which is actually a visual inversion of the image into a positive appearance. The mercury had very little effect on those areas less exposed to light.

At this point the problem of stabilising the image becomes less critical because the unaffected area, that is, the dark areas of the original scene, become naturally darker under the effect of light when the support plate is lit up for observation. This has the effect of accentuating the difference between the dark areas and the lighter areas of the amalgam. The white areas in which mercury has mixed with silver are not subsequently affected by noticeable changes of light or dark.

The sensitivity of salt of silver diminishes further in the presence of chlorine. In fact silver chloride is no longer photo-sensitive when there is too much chlorine. Washing the photo sensitive plates in salt water was a procedure to stabilise the picture rather than to fix it.

This was thus the solution initially adopted by Daguerre, even if the mercury vapour treatment rendered almost unnecessary the need to prevent the darkening of areas that had not been exposed to sunlight.

Daguerre later told the story that the discovery took place quite by accident when he noticed the positive image of a spoon that had been left unintentionally on one of the plates in the wardrobe.

He later placed other exposed plates in the wardrobe and was astonished to find that they too had developed mysteriously a positive aspect. In a process of elimination, he removed all the other chemical substances found in the wardrobe one by one until he realised that the phenomenon only took place in the presence of a recipient containing mercury.

The dangerous vapours of mercury, working in conjunction with the iodization, engendered the chemical transposition that people had been so long in waiting for. With what became known as the daguerreotype, a new optical and chemical era of photographic images had begun.

The public announcement of the invention took place on the 7th of January, 1839, at the Academy of Sciences at Paris, with the public reading of a dissertation in front of the members of this prestigious scientific institute. The speaker was François Jean Dominique Arago, (Estagel, (66,) Paris, F, 1786-1853,) an admirer and friend of Louis Daguerre.

In his report Arago insists repeatedly on the importance of the discovery of the process to obtain positive images.

« The extreme sensitivity of the substances employed by Mr Daguerre is not the only reason that his discovery stands above all the many unsuccessful experiments in which men have tried to draw silhouette images on supports prepared with silver chloride. This type of salt is white but the light darkens it so that the light parts of the image become dark and the dark parts remain white or light in colour. On the photographic plates prepared by Mr Daguerre the subject and its representation are strictly the same tonality. White corresponds to white, half tints are half tints and black is black. »
The Daguerre's window

Daguerre was at that time very busy in his work the Diorama, a theatre that based its spectacularity on the vision of perspectives and panoramas that come alive thanks to surprising variations in lighting. Therefore he built a covered little terrace, largely windowed, just above the apartment that he occupied on the right wing of the Diorama.

This architectural structure is easily recognizable in the building plan designed by Alexis Donnet and engraved by Orgiazzi, circa 1837. From here Daguerre took his early outdoor photographic tests.

This location was about 18 meters above street level and offered a beautiful view of the Boulevard du Temple. We do not know how many attempts were made before he obtained a fully satisfactory result.

In the illustration here up here:
Boulevard du Temple, engraved by Edouard Renard on L'Illustration, journal universel, 1845.
The Diorama is for a while missing, burned in 1839, but the shoeshine still appears at the corner of the boulevard, near a street lamp.
The point of view of Daguerre was on the left, a little further backward and angled from the street.
The building just ahead, the office of a Commissioner at the Mont-de-Piété, is corresponding to the one in the forefront of Daguerre's 1838 photography.
On the top right side, the windowed turret placed over of the Daguerre laboratory from which it was possible to take a picture of Boulevard du Temple. Circa 1837.
The figures on the street look like two persons sitting at a table and a shoeshine next to a man.
Certainly the site offered unparalleled advantages for the repetition of tests on a well lit and adequately contrasted scenario. The camera angle on Boulevard du Temple did not allow to take up the most choreographic side of the road: the one with the greatest theaters of the capital.

It must be kept in mind that the daguerreotype plate is recorded as a mirror-like vision with inverted sides, as happens because of a simple optical phenomenon in every camera. The real vision from the window of Daguerre should therefore be reversed, as it is represented in this book, compared to the conventional reproduction that we know of the original plate. Daguerre knew perfectly well that at least twenty minutes would need to elapse from the moment he began the exposition of the plate up to the time of its conclusion. There was plenty of time to get in the street, sit down at the coffee bar table and stay there for a long time.

Who can exclude that the brilliant French painter hadn’t thought about it?

In 1838 the daguerreotype was fully technically mature and was only waiting to be exploited. Meanwhile, other researchers, ignoring each other, carried out various experiments in an attempt to produce positive images directly on paper. This book, however, deals with daguerreotypes and therefore you need to refer to other texts of history of photography to deepen these topics.

On the morning of the 8th of March, 1839, Daguerre went to visit Samuel Finley Breese Morse (Charlestown, 1791 - New York, 1872), the inventor of the telegraph and the code, who had come to Paris to publicise his electric communication system. Towards midday, the Diorama theatre took fire and burnt to the ground. Up to then the Diorama had been Daguerre's principal source of income.

The event inspired Arago to seek out urgently an alternative means of economic support for Daguerre, who was still engaged in costly research for improvements to his photographic processes.

Arago considered that to try and procure royalties from each individual photographer around the world would be a thankless task. So he hit on the idea of trying to sell the rights to the French government.

In this way the French nation would gain the glory of having offered freely to the world at large the invention of photography.

Arago put forward a proposal whereby France would acquire these rights in exchange for a life-time pension for Daguerre and Isidore Niépce, (1805-1868,) the son of his ex-partner. The proposal was accepted and the decree was announced on the 7th of August, 1839.
The Talbot’s window

The news about Daguerre’s extraordinary results had reached Britain in early 1839 causing considerable apprehension to another pioneer of photography. He was William Henry Fox-Talbot, (Melbury House, Dorsetshire, 1800 - Lacock Abbey, Wiltshire, 1877).

He had spent several years of efforts in trying to reproduce images from a “camera obscura” on paper supports and he was almost ready to present his processes in public.

The idea of seeing another man pass before him on the finishing line was very discouraging to Talbot. Talbot had been passionate to produce panoramic images with a “camera obscura” on a voyage to Italy in 1833 and he had experienced first hand the difficulties of taking live portraits.

He had followed up the experimental work of Thomas Wedgwood (Etruria Hall, Staffordshire, 1771- Eastbury, Dorset 1805) and Sir Humphry Davy (Penzance 1778, Ginevra 1829). They had been successful in achieving photogenic drawings thanks to the action of the light on the silver salts, but had been unable to make stabilised pictures.

Talbot realised that light had different effects on silver chloride depending on the relative proportions of salt and silver.

Up to then scientists believed that silver chloride with the correct chemical ratio held the same photosensitivity whether in silver excess or in chlorine excess.

The major contribution of Talbot was the realisation that an excess of silver increased the sensitivity while an excess of chlorine decreased sensitivity to the point of stabilizing it almost permanently.

Daguerre had come independently to the same conclusion. Unfortunately his “photogenic drawings” were still with an inverted tonality but the correct manner of registering a picture in a “camera obscura” had been established.

At the beginning of 1839 Talbot was unable to know the details of the solutions discovered by Daguerre but he was unwilling to be beaten at the post. He decided therefore to present in public the results already obtained in order to establish a degree of priority.

The chosen forum was the Royal Institution, a nonprofit making establishment for the advancement of scientific research, supported by writers and scientists and founded by Sir Benjamin Thomas, Count of Rumford, (Woburn, Mass, USA, Paris, F, 1753-1814).
The chairman of the day, Michael Faraday, (London, 1791-1867,) announced on the 25th of January, 1839, the discoveries of both Daguerre and Talbot, presenting examples of Talbot’s “photogenic drawings” and his negative images taken in a “camera obscura” in about 1835.

In the paper presented by Talbot the following week, (on the 31st of January,) he spoke of his experiments and stated that:
« Light, acting on the rest of the sheet of paper, would naturally have darkened it, (meaning the area surrounding the subject,) while the areas in shadow would have remained white. »

Talbot had succeeded in registering images on paper supports in a “camera obscura” and in stabilising them from excessive chlorine by washing them in salt water but he was not yet capable of producing positive images.
Talbot had worked extensively with the paper sensitized by silver salts and learned to take full advantage of its features to copy drawings and take imprints of opaque objects.

The principle of this invention for light imprints was the source of inspiration for his photogenic drawing process: the production of silhouette or transparent images by light projected from behind the subject.

His ‘latticed window’, taken from his residence at Lacock Abbey, is the clearest demonstration of this.
Talbot did not take a photograph from the window: instead he took a picture to the window.

Along with the experience of making photogenic drawings, he knew he had to put the shooting point in backlit, So that the contrast between the shadow of the window frame and the design of the glass will appear in strong opposition to the light coming from outside. In this way he obtained a silhouette of the window, more than a true photograph like nowadays it can be expected.

Only long afterwards, after seeing the results of Daguerre, Talbot decided to work in a completely different direction.

At this stage it is necessary to take a few steps backward in time to realise how and where the road towards the photographic inventions of Daguerre and Talbot came into contact with the key discoveries of Sir John Herschel (Slough, Buckinghamshire, 1792 - Collingwood, Kent 1871).

Sir John Herschel was an astronomer, a mathematician and a chemical researcher, extremely well informed and very curious about each new scientific discovery. On the 22nd of January, 1839, he received a letter from his friend the scientist and geographer, Sir Francis Beaufort, (Navan, 1774 - Hove1857,) who made a passing reference to the discoveries of Daguerre.
Sir John was well aware of the research carried out by another friend of his, William Fox-Talbot, and his curiosity was aroused to find out more details about the latest discoveries in the field.

He therefore decided to make some experiments himself with a solution that he had himself discovered earlier. These tests are well documented in a diary that he kept up to date.

On the 29th of January, 1839, he wrote:
« Exp. 1012. - Experiments tried within the last few days, since hearing of Da-guerré's secret, and also that Fox Talbot has got something of the same kind. »

« Exp. 1013. - Daguerre's process - attempt to imitate. Requisites - 1st, very susceptible paper; 2nd, very perfect camera; 3rd, means of arresting further action. Tried hyposulphite of soda to arrest the action of light by washing away all the chloride of silver or other silver salt; succeeds perfectly. Papers half acted on, half guarded from the light by covering with pasteboard, were withdrawn from sunshine, sponged over with hyposulphite, then washed in pure water, dried, and again exposed. The darkened half remained dark, the white half white, after any exposure, as if they had been painted with sepia. »

The idea of using the salt of sodium from the acid which he calls “hyposulphite” came to Herschel instinctively and naturally as this was one of his own discoveries from 1819 and he was well aware of its properties.

Herschel gave it the name “hyposulphite of soda” because he had miscalculated the exact chemical composition of the substance, which is more precisely called sodium thiosulfate. The true composition and name only came to light in the second half of the 19th century after a discovery by the French scientist, Paul Schützenberger, (Strasbourg, 1829 - Mézy-sur-Seine 1897).

However, the term hyposulphite had entered the photographic vocabulary and still persists to the present day, despite the error.

The action of this solution is to dissolve the salt of silver not yet altered by light and this was the missing step that enabled permanent fixing of an image to its photographic support. The problem which had been a major stumbling block to progress in photography was radically and definitively solved by the British born scientist.

Without Herschel's fixation solution the history of photography might have remained restricted in the technical dead end represented by the Daguerreotype, which by its nature did not require an authentic fixation.
**Herschel’s window**

The next day Herschel made a negative picture of the great telescope that stood in the garden of the family home in Slough, the “Great Forty-Foot” built between 1785 and 1789 by the astronomer William Herschel (Hannover, 1738 – Slough, 1822) father of John.

The massive cross-beam structure, which Herschel would have demolished the following year, was ideal for the backlit picture that the scientist had in mind after observing Talbot’s evidences.

Right face to the laboratory window, the huge difference in level of illumination between the beams and the sky would have made splendidly by contrast the interweaving of the black lines standing out against the light.

After the Daguerre’s invention, all the photographers of the world would learn that the subjects had to receive a good lighting, and not remain outlined in silhouette.

But what interested Herschel was a different thing: making photographic shooting stable over time. So he exposed the paper in camera obscura and fixed it as he had learned to do.

« Jan. 30, 1839. - Formed image of telescope with the aplanatic lens . . . and placed in focus paper with carbonate of silver. An image was formed in white on a sepia-coloured ground . . . which bore washing with hyposulphite of soda, and was then no longer alterable by light. Thus Daguerre’s problem is so far solved... »

He later noted in his diary:

« I tried an inversion of the tonality. It worked, but not very well. In any case I have no doubts that it will work when I master the details. »

This was the second and decisive intuition that settled definitively the process of negative to positive imagery. In fact the negative constitutes the matrix of multiple visual information that Niépce had searched to transmit with laudable determination but limited results.

Friday the 1st of February, 1839, is a crucial date for understanding two important factors in the early history of photography.

That day Talbot went to visit Herschel at Slough. Herschel was one of the few perfectly disinterested scientists, untouched by motives of personal gain or the glories of discovery. He showed Talbot an image just registered on paper with silver carbonate and washed with “hyposulphite of soda” and also the picture just taken of his telescope, while explaining all his procedures.

The friendship and esteem which Herschel held for Talbot led him to transmit the vital information that would complete and define modern photographic processes.
Instead of Talbot promising not to present Herschel’s discoveries as his own it was Herschel himself who offered to keep them secret until Talbot was ready to reveal all. In a letter to Talbot on the 12th of February, Herschel wrote:

« I shall mention no further the process of washing out with the hyposulphite if you disapprove of it and shall wait with patience for the revelation of your mode of fixing, which must be a very chemical bijou. »

It is clear why Talbot was shy to talk about his own methods; he had realised that his partial stabilisation in salt water was a provisional and inadequate method.

At this point the opposite of negative had become one of those brain twisters to which everybody and nobody knew the answer. The negative of negative is obviously a positive! In fact, the so called hyposulphite of soda washing process was the ideal means of solving fixation problems. With it, photography had become a practical proposition available to mankind.

At the end of February Talbot asked Herschel’s permission to communicate to the Academy of France the properties of hyposulphite as a means of fixing images. Herschel not only encouraged him but supplied him with samples of the solution and suggested that he used the words photograph and photography to describe the new medium. The word “photography” appears for the first time in a note of Herschel from the 10th of February, 1839.

Talbot’s paper to the French Academy was read out by Jean Baptiste Biot, (Paris, F, 1776-1862,) in front of Arago and the suggestion of using Herschel’s fixing solution was immediately adopted by Daguerre. Traditional B&W monochrome photographs are still produced today using salt of silver and thiosulphate.

An originally authentic contribution to photography was made by Talbot two years later. On January the 5th of 1841 he announced in the “ Literary Gazette and Journal of Belles Lettres, Arts Sciences, etc.,” that he had discovered a revolutionary process whereby one could obtain a photographic portrait with only one minute of exposition, rather than in a hour of sitting required until then.

In practice this new discovery was not a technique concerning sensitivity but the exploitation of latent image and development applied to substances already in general use.

Talbot had realised that a photo-sensitive surface underwent an immediate invisible change on exposure to light.

Even after only a brief period of seconds in which no changes could be seen a perfectly formed image had been registered.

One needed only to develop the support in the usual way for the image to become visible. Up to that point the photogenic designs were developed by directly manifested blackening and required a decidedly prolonged duration of exposure to intense light.
The daguerreotype rule

Until 1841 the daguerreotype remained unrivaled and even later the formal qualities of the two photographic processes (daguerreotype vs calotype) were not objectively comparable, given the diversity of their nature.

Talbot's invention never obtained the success of the Daguerreotype, even in Britain, partly as a result of the expensive patent right but also on account of its divers and important technical limitations.

The reduced sensitivity of the paper support called for a longer time in pose for the subject and a less clear photograph, caused by the weave of the paper. In order to obtain a Talbotype two exposure passages were required, one negative and one positive.

From a chemical and an operational standpoint the Talbot processes were relatively complex, according to the variables of time, temperature, concentration of the chemical solutions, etc, etc. Eventually, the contrast between black and white would begin to fade, creating problems of long time conservatism for these images.

None of the characteristics mentioned so far affected the Daguerreotype but as the calotype problems were caused by the physical structure of the paper support, these same properties could be considered an advantage from an artistic point of view.

The Daguerreotype represented photographic technology that was capable of producing a perfectly realistic image of the subject, whereas the talbotype left the space and opportunity for a creative and interpretive artistic expression.

The paper support made that much easier the operations of manipulation, drawing over, painting, cutting out, mounting and re-assembly.

Copies on paper could be printed relatively easily and it was a fairly simple product to handle without particular precautions but the surface of a Daguerreotype could be irremediably damaged by the slightest contact.

Artists preferred the Talbotype because its warm tones which gave it the appearance of an old painting and its traditional support could be worked on with pencils, charcoal sticks or paint brushes.

The crude reality of a Daguerreotype image was certainly its strongest advantage but made any artistic intervention a challenge.

The early months of 1839 was a very rich period for photographic experimentation in various parts of the world but generally each researcher remained relatively ignorant of what his colleagues might have achieved.

January 7, 1839 The daguerreotype, itself a space-time window able to transfer for a moment in a certain moment and place, mirror and trap, sign and witness of presence, opened an era that would change the history of humanity.
Advertising leaflet of Désiré François Millet, Rue de Montesquieu, 6, Paris.
The daguerreotype

The sheet of metal from which a daguerreotype was formed consisted of silver plated copper. The procedure by which the surface was prepared for photographic exposure is still little known. Normally it was not achieved by a common galvanising dip. A sheet of pure silver was laid across another of copper and the two were introduced together onto the rolls of a laminating press.

The thickness was then gradually reduced by continuous passages through the laminator. This metal-working process incurred an important capital investment through the elevated costs of the prime materials and that of the specialised industrial machinery.

Once the laminate was sufficiently thin the sheets were cut and pressed in order to make them perfectly flat. A buffing and polishing process was now initiated that utilised a "rag-wheel" device which was turned by a treadle or steam whereby rag cloths prepared with a powder called jewellers rouge rubbed the plates energetically. Finally, the finished plates were prepared for sale in paper packets and cardboard boxes.

Even the earliest production offered perfectly flat plates which, however, had to be carefully polished just before use. To fix the plates firmly onto its polishing support one needed to bend the corners slightly using a specific instrument.

To fix the plates firmly onto its polishing support one needed to bend the corners slightly using a specific instrument.

Later plates with margins already slightly precurved were sold to facilitate the direct fitting into the polishing frame which in turn would be inserted in a vice for further processing.

The buffing and polishing process was usually carried out with the plate fixed firmly into place on the top of a wooden block with holes bored upwards on the underside. Upright pins fixed to the bench entered the holes and prevented movement during buffing operations. Another system used a frame with clamps held by a large wooden vice. The vice was held by a robust bar in another vice fixed to the work bench. Patents were lodged for various clamping devices with different ways of carrying out this operation.

The traces left by the clamping devices on the back and sides of a plate are a great help in the identification of a particular type of patented vise.

The patent of a buffing or polishing system discovered from the clamping marks on a plate can help to establish the approximate date of a photograph. The most popular commercial devices for holding a plate during polishing were those manufactured by the Shive company of Philadelphia and the Benedict Plate Holder.

The buffing and polishing operations on a plate were absolutely necessary before its exposure in a photographic camera.
Daguerreotype hallmarks

In the early days the pioneers of the daguerreotype used a round tampon in wood, covered in a velvet or cotton flannel cloth. The most popular polishing powder in use came from marine diatom fossils. The oldest deposits of this material come from the Cretaceous age, 120 million years ago.

The fossil powder most commonly used to polish daguerreotype plates came from the remains of pre-historic Protozoan marine animals and it was sold in different grades of a fine powder. The best known of these was the Tripoli Powder, named after the town it came from.

Operators were advised to clean and polish the plates with side to side movements, across the intended disposition of the photograph, which would be looked at under angled light.

The final circular polishing movements would use a small block of wood wrapped in a piece of chamois leather that had been imbibed with charcoal dust sprinkled with drops of oil.

The early Daguerreotype operators used a variety of products of their own invention but the object was always to obtain a perfectly clean and lucid silver surface, absolutely uniform and without the slightest defect.

Some operators took care not to employ any product that contained oil and they began with a cleaning treatment using a fine combed cotton cloth and a sprinkling of Tripoli powder. The polishing then continued utilising tampons of cotton sprayed with Parisian Rouge, that is to say ‘jewellers rouge’. Great care was taken not to touch the surface for fear of contaminating it with oily fingers.

Apart from fine quality jewellers rouge, numerous commercial products were sold for the polishing of Daguerreotype plates, such as Magic Buff, advertised in contemporary American newspapers.

Later the buffing with tampon gained popularity, a finer polishing work done with a hand held stick covered in flannel cloth or fine chamois leather. The well equipped Daguerreotype operator kept a large collection of rubbing sticks, each one used to rub an ever more intangible powder on the plate. A pinch at a time of fine powder of fossilised material would be rubbed carefully onto the plate, using a choice of sticks wrapped in a warm flanel.

A few drops of lubricating oil would sometimes be sprinkled over the surface to make a delicate abrasive paste. In pauses during the work the sticks would be placed in a tin can kept warm by a spirit lamp. To obtain a perfect mirror finish required a good twenty minutes of hard work.

Here the jewellers rouge and Magic Buff were employed with other commercial products. All traces of the oil used for the polishing paste were removed carefully before the sensitization with iodine and bromide vapours and therefore a final wash was carried out in alcohol or ammonia.
Plates that had been previously exposed in an incorrect manner could be polished again and re-galvanised with an electrolysis process powered by Bunsen batteries in a potassium cyanide basin containing a silver anode. When a plate took on a grey-blue colour, it indicated that the silver galvanisation had taken place successfully. The plate would then be washed carefully, in alcohol, in ammonia and finally in water, before being dried off by a spirit lamp.

After the indispensable buffing process the photosensitivity was produced by placing the plate in its frame inside a box that held a container for an iodine sensitivity solution.

A trapdoor inside the container would slide open to let the plate be exposed to the iodine vapours. The time necessary for the surface of the plate to turn yellow as silver hydrate varied between 15 to 25 seconds and this then indicated a good sensitivity level. The colour of the surface at the end of the operation varied between a shade of orange and canary yellow.

The iodine could be kept for years if it was correctly sealed in its container, as this system rendered it always ready for use.

Daguerre's invention originally required only iodine to be used but the discovery of a double sensitization that employed iodine and bromide together brought on a great improvement to the sensitivity levels of photographic plates. This new method obviously required a second treatment container.

The frame with the plate already rendered photo-sensitive by iodine was reinserted into the box with the container of bromide, a substance that can be used in solution but more frequently sprinkled on a bed of powdered lime.

A commercial alternative, sold ready for use, was known as 'Magic Quick'. This compound could be made up, starting with a pound of lime, (450gr). Oyster shells were used, roasted into a floury mixture and treated in alcohol before transformation into a dry powder. The preparation continued in a glass bottle with the addition of an ounce of bromide; the mixture was to be shaken, not stirred. An excess of bromide could be neutralised by adding more lime powder until the concoction took on a red-brown colour.

The treatment in a box for rendering the plate photo-sensitive was the same for bromide as it had been for iodine. It was enough to hold the plate in position for 5 to 10 seconds to obtain a dark pink colour, almost prune purple, that indicated the formation of a thin layer of silver bromide. If the result required more than 15 seconds that indicated the necessity of adding more bromide.

An excess of exposure time to bromide produced a plate with a spotted surface and a progressive loss of photo-sensitivity. This loss of sensitivity occurs to all the silver halides, iodine, bromine, chlorine, used for rendering photographic materials photo-sensitive.
Exposure to the vapours used for photo sensitivity purposes should therefore never be prolonged unnecessarily. Bromide remains active for months so it did not need to be replaced frequently.

At this point the surface of the plate was covered by a thin layer of silver halide and of silver bromide, already fairly sensitive to light. A last passage of a few seconds in the box with the iodine container was considered necessary for the completion of the sensitivity process to render the plate ready for exposure in a camera.

For exposure in the camera the plate should be inserted in a special light-tight frame and protected by a rigid sliding curtain.

The chassis for sensitive plates in traditional optical bench cameras is built following the same principle.

The camera was usually built in a rigid wooden box that would be mounted on a tripod when ready for operation.

The lens remained normally closed by a metal cap. In the back was placed the frosted glass window on which the operator, covered by a darkening cloth, could compose the field of the camera lens.

Once the focus established, the cap was gently repositioned on the lens. Then the focusing glass was replaced with the chassis loaded with the sensitized plate, obviously with the blind curtain in the lowered position.

The exposure was made by extracting the curtain out of the chassis and removing the cap for the necessary time, which could vary between one and thirty seconds, depending on the amount of light available.

In order to be able to operate throughout all the seasons of the year and for the longest possible number of daylight hours, most professional photographic studios were built with large windows on the highest floors and some operators worked outside on the flat roof of a building.

Complex systems of curtains, controlled by hand pulled cords, allowed light to be controlled accurately to vary its intensity and its luminous qualities.

The subjects were required to remain motionless throughout long exposure periods, which explains many of the rigid stances visible in old photographs.

When a photographer was helped by favourable conditions he often succeeded in picturing the subject at ease in a serene and natural attitude, avoiding the need for head-rests.

These mechanical devices had always been necessary in early portrait studios to prevent the subject from moving during the long exposure times.

On the completion of the exposure, the sliding curtain of the chassis would be again lowered to keep the plate protected from light. The plate in its blind frame would be transported to a dark but ventilated room to complete the treating.
There was no real development, since the blackening, that is the chemical transformation of iodide and silver bromide into metallic silver, was immediately visible.

This ‘developing’ procedure was intended simply to render the exposed areas of the plate more or less opaque, leaving the darker area in the varieties of different shades. Mercury, joining with the exposed silver salts, produces a clear mixture proportionally to the amount of light absorbed by the photosensitive substances during the exposure in front of the subject.

The process now required a new exposure of the plate to vapours of mercury. While this work was under way the operator or assistant endeavoured to avoid the inhalation of poisonous fumes.

For this delicate operation a small cast iron tank was employed, whose shape was that of an inverted pyramid, mounted on a frame above a spirit lamp or Bunsen burner. A very small quantity of mercury was poured into the base of the tank while the plate was fixed over the top, face downwards, to absorb the vapours rising from the heated base of the tank.

The temperature was controlled by a thermometer fixed to the side of the tank in order to maintain it at about 79° Centigrade. Only the photographer’s experience allowed him to judge the length of time necessary for this treatment but it generally lasted from 2 to 3 minutes.

Another basin of glass designed to accept the plate and its holder had been prepared in the meantime with a solution of thiosulphate of soda, (erroneously named then, but still today, as hyposulphite of soda on account of a miscalculation at the moment of its discovery).

This time the plate was immersed in the solution face upwards in order to remove chemically all remaining traces of iodine and bromide that had not been transformed by sunlight. In this manner the image was stabilised on the plate and would not suffer from the effects of further exposure to daylight.

Finally it was necessary to proceed with a good wash in distilled water to eliminate possible elements of chemical residue from all the treatments undergone.

A complete fixing process and a subsequent thorough washing were the two most basic conditions to be met in order to ensure the longevity of a daguerreotype picture.

Another element that determined stability and a resistance to scratches, while at the same time conferring a warmer tonality to the image, was the practice of the gold toning (gilding). This particular procedure did not generate a golden tone. It simply replaced the metallic silver elements on the surface of the plate with a far more stable chemical composition based on gold salts. For these purposes a frame for treatment with gold chloride was employed here but the image on the plate was now facing upwards.

Adjustment screws at the base of the frame allowed the plate to lie in a perfectly horizontal plane. In this way tiny drops of the gold chloride solution were able to stay on the plate without rolling off the edges.
To obtain the same results became much more difficult when larger sizes of plate were being handled.

A heat source was used to warm the back of the plate while the gold chloride solution was poured gently over the surface, a few drops at a time. The chemical process that governed the new formation made the surface harder and enriched the tonal scale, which still remained practically monochromatic.

Commercial competition from the miniaturist painters imposed colouring techniques with pigments that needed to be applied in an exceedingly delicate and non-invasive manner, so as not to upset the specific photographic properties of a daguerreotype picture.

To this end different watercolor pigments, aromatic colour compounds or metallic oxides were used, fixing them with gum arabic. Very soft brushes were needed to apply these products, some of which were highly toxic and could only be handled wearing rubber gloves.

An excess of colouring powder would be blown off the surface using a small rubber suction bulb. Of the powder paints, the most widely used was “ladies' flesh colour” and “carmine red”, light touches of which could be used to revive a pallid cheek or lips. Artificial liquid gold or silver could be employed to bring to life the sitter's jewels.

All these colours were applied directly onto the surface of the Daguerreotype while it laid inclined on a wooden easel. It is evident that only expert miniaturists were engaged on this type of employment.

The last stage of these complex procedures in the production of a unique, refined and authentic photographic and artistic oeuvre d'art concerned the choice of mounting techniques.

In Britain and the USA the overwhelming majority of these objects were mounted in a hinged case that opens up for display on an item of furniture, on a table or on a shelf. This solution enabled the portrait to be folded up and transported safely, an important aspect of modern life-styles that involve many changes of address.

The most reliable sources of information for an understanding of the specific nature of a daguerreotype remain the original historians, the pioneers of daguerreotype technology, but also the many old technical manuals of photography and the contemporary periodical magazines dedicated to the art of photography.

As a further contribution of study, the entire article is republished in the following pages “The Photographic Times and American Photographer” (Volume XIX, N°403, Friday the 7th of June 1889, pages 279-281).
The Daguerreotype

THE DAGUERREOTYPE

The appearance of the brief account of Joseph Nicéphore Niepce's life and work, in THE PHOTOGRAPHIC TIMES a few weeks ago, has been amply justified by the interest which it has aroused in our readers.

As the time set apart for celebrating the semi-centennial of photography draws nearer at hand, a more lively interest is manifested every day in the men and methods which made our approaching semi-centennial possible.

It may seem strange, at first thought, that Daguerre's own process is not familiarly understood by every disciple of the camera; but the fact is, very few professional photographers, and still fewer amateurs, are familiar with the working details of the process.

This is undoubtedly because Daguerreotypy fell into disuse so many years ago, and before photography was practised at all as a pastime. It will be profitable, therefore, to at least briefly recall the beautiful old process at this time.

Shortly after the details of Daguerre's invention were announced in the United States by Professor S. F. B. Morse, of New York, who was at the time of the discovery residing in Paris, American investigators commenced a series of experiments which resulted in considerably improving and advancing the new art. Some of the earliest workers in this field were Doctor Chilton, Professor J. J. Mapes, Professor S. F. B. Morse, of New York; Doctor Goddard, Mr. Cornelius, and others of Philadelphia; and Mr. Southworth, Professor Plumbe, Alexander S. Wolcott, and John Johnson.

The first plates were all made in France. They were of hammered copper, and silvered on one side by a process not generally known. They were originally made six and a half by eight and a half inches in size, and were then cut into halves and quarters.

Thus originated the terms “whole” plate, “half” and “quarter” plate which are used at the present time in connection with gelatine emulsion plates. As soon as Americans began to manufacture copper plates for Daguerreotypy, they increased the size to eight by ten, which was called “extra whole size,” and to eleven by fourteen, or “double whole size.”

The Scovill Manufacturing Company, of Waterbury, Connecticut, were the first to manufacture Daguerreotype plates in this country. They were soon followed by Holmes, Booth & Hayden's, and for some time's these were the only two American manufacturers of the copper plates. Mr. John Johnson speaks, in the second volume of Humphries Journal (1851), of some of the difficulties experienced in this country at first to obtain suitable plates: “It was a very rare thing to be able to procure an even surface,” he writes, “from the fact that a pure surface of silver could scarcely be obtained. Accordingly, we directed Messrs. Scovills, of Connecticut, to prepare a silver-plated metal with pure silver; it fortunately proved to be a good article, but, unfortunately, a pound of this metal (early in 1840) cost the grand sum of nine dollars.”

These rolled-silver plates were prepared as follows: A thin plate of silver was soldered on one side of a brick of copper, and then rolled down thin. The plates were cut from the metal, stamped to flatten them, and then polished with rouge on a rag-wheel.
Daguerreotype hallmarks

The same method was employed by both the Scovill Manufacturing Company and Holmes, Booth & Haydens. The plates thus prepared were never superceded or improved for the purpose of daguerreotypy, though many were the attempts made.

The plates coming from the manufactory were silvered on one side only, as was said, and, the silver coat being very light, they were always re-galvanized before actually being used. The plate was first thoroughly cleaned by rubbing it with finely levigated tripoli and a few drops of olive oil. A tuft of cotton or canton flannel was used for the purpose.

Any oily matter left on the plate interfered with the subsequent operations, especially the galvanizing; so that alcohol diluted with water, and occasionally with a few drops of ammonia, was employed to remove the oil.

After cleaning, the plate was buffed and re-galvanized. Buffing was accomplished in the following manner:

The cleaned plate was set in a moveable clamp in a heavy wooden block, on the lower side of which was a hole that fitted snugly to a pin projecting from a vice attached to a work-bench. Shive, of Philadelphia, made these blocks. The block and plate firmly secured, buffing was commenced.

The first buffs consisted of a round piece of wood, covered with flannel and velvet, in which has been rubbed fine charcoal dust or rouge. Later this pad was replaced by the hand buff, a stick of wood twelve to eighteen inches in length and three inches wide, and also covered with canton flannel, velvet, or soft leather.

With the fine charcoal powder, or a nostrum sold at the time under the name of "Magic Buff," the work was done more effectively and with greater ease than at first. After the hand buff, came the buff-wheel, which was about twelve inches broad and thirty-six inches in diameter.

The broad circumference of this wheel was covered with a very fine wash-leather, and rubbed in with rouge of the very finest quality. The wheel was generally propelled by means of a treadle, though, in a few instances, steam was employed. The plate was held against the rigid surface of the wheel till it was rubbed perfectly bright and free from scratches.

It took several minutes to buff a plate thoroughly. After the buffing, the plate was galvanized in an ordinary cyanide of potassium trough, with a silver anode and a Bunsen battery.

When silver enough had precipitated upon the plate to give its surface a uniform bluish-gray color, the plate was removed from the bath, well washed, dried over a spirit lamp, and put away in a box for safe keeping.

Before sensitizing the plate it was again buffed with much care, dusted off and coated. Two boxes were used for the coating, one containing the iodine and the other the bromine.
The plate was first subjected to the vapors of iodine until a sufficient amount of iodide of silver had formed, and then bromine fumes were applied, to accelerate.

I. H. Cucher, one of the earliest writers on daguerreotypy, describes the method as used by most American operators. He says: “I tinge the plate over the first box containing the dry iodine, to a color from deep canary yellow to orange.

In the second box, containing the dry bromine accelerator, the plate is given a deep purple or plum color, and” it is then repassed to the iodine box about half the time it took to produce the canary or orange color.”

The bromine was used in either an aqueous solution, or dry. In solution, it never gained much favor among Americans. It was in the dry form, under the name of “Magic Quick,” that it gained its immense popularity. It was prepared by saturating a pound of dry lime (burned oyster shells were much used), with ordinary alcohol, and then reduced to a perfectly dry powder.

This powder was put in a glass-stoppered bottle, and shaken up well with an ounce of bromine. If the vapors of bromine were prevalent, more lime was added until all the bromine was neutralized and the powder assumed a reddish-brown color. The coated plate increased in sensitiveness by standing, but only to a limited degree. After several hours, the coated surface became spotted, and sensitiveness decreased.

When Daguerreotypy was practiced, lenses did not receive as much attention as they do now. The great object then was to produce a picture in the quickest possible time, and objectives of the very shortest focus and of immense diameter were, therefore, used.

After exposing the plate, it was developed by the vapors of mercury. The developing apparatus consisted of an inverted iron cone to the apex of which a bulb for holding the mercury was attached. One side of the developing apparatus had a thermometer divided into centigrades.

When, from the heat of a spirit lamp, the thermometer indicated ninety degrees, the mercury began to evaporate, and developing could, therefore, be proceeded with. The open side of the cone was enclosed with an iron frame to which kits were fitted of the various plate sizes. In these kit frames the plates were placed for development.

After development, the plate was fixed with hyposulphite of soda, washed well, dried, put up in a neat velvet case, and finally delivered.

Gilding the plate was later practiced, and was considered a great improvement. It was accomplished by bending up the corners of the plate so that a miniature tray was formed capable of holding a certain amount of the gilding solution.

This solution consisted of either a diluted mixture of chloride of gold and hyposulphite of sodium or a solution of a hypo-sulphite of gold and sodium, sold under the French name of “Sel d’or.”
Daguerreotype hallmarks

After heating this solution tip to the boiling point, the plate was well washed, and dried by the heat of a spirit lamp. Gilded Daguerreotypes could be colored by dry dust colors, but this did not improve the artistic quality of the plate very much.

Our illustration gives a good idea of an old-time Daguerreotype establishment.

The days of Daguerreotypy have undoubtedly past never to return, but no one who has ever turned a buff-wheel or handled the coating boxes, will forget the pleasant and profitable times of the Daguerreotype.

With these words of regret the American author of the article closes the door, already in 1890, on the first photographic technology to have gained an indisputable international success.

In Europe the Daguerreotype fell into disuse before America and more quickly, in favour of the rapid success of the Carte de Visite format on Albumen paper.

The results from the point of view of quality, in terms of the subjective representation, achieved by daguerreotype, gave a spectacular definition to the image, limited only by the poor quality of lenses, and remain today, in some ways, unmatched.

A restricted number of enthusiasts from our own age, at the beginning of the third millennium, still use Daguerreotype technology to produce refined photographs.
Equipement for daguerreotype

a) Camera obscura  
b) Box for daguerreotype plates  
c) Plateholder with clamps  
d) Polishing plateholder  
e) Hand-buff stick  
f) Iodine box  
g) Bromide box  
h) Mercury cabinet with sliding legs  
i) Flat dish for washing  
l) Leveling stand for gilding
Daguerreotype hallmarks

Fabrique par machines à vapeur
Des plaques pour daguerréotype à l'aigle H. B.
Plaques galvanisées garanties,

Hy BEAUD et Cie.

7, Cité Holzbacher, entrée 25 et 25, rue des Trois-Bornes,
Ci-devant, 4, rue de Saintonge, et 113, Vieille-rue-du-Temple.

Cours
de
Daguerréotype
et de
Photographie.

Conseils gratuits sur le
Daguerréotype
et la
Photographie.

Plaques
galvanisées
en
première
qualité
et
garanties
au
Daguerréotype
et à la
Photographie.

Ouvrages
de tous
les auteurs.

Stéréoscopes.

Épreuves
de
Stéréoscopes
sur Plaques,
Verre et Papier.

Produits Chimiques
essayés.

Papiers
de toutes sortes
essayés.

Plaques à l'aigle H. B. et autres, toujours parfaitement soignées et vendues de confiance.

Fabric de passe-partout de toutes sortes. — Fabric d'Ébénisterie pour appareils. — Fourniturs générales de tous les articles et accessoires pour Daguerréotype et Photographie.
Quarter-plate daguerreotype mounted in French frame 20.5 x 23 cm. Hallmark: top and to the left, CHRISTOFLE. Origin: Montagnole, Rhône-Alpes. Atelier: Daguerreotype M.r et M.me DISDERI, Rue du château, Brest, FR.
Sixth-plate daguerreotype fitted in thermoplastic case
“SMITH’S PATENT IMPROVED UNION CASE.”
Hallmark: lower right, ANSON.
Sixth-plate tinted daguerreotype. Actual size: 65.6 x 78 mm.
Dorsal hallmark (verso of the plate): lower right corner, AS6SDE.
ASTERISK 6 Sectors Disk Engraved.
Origin: Plymouth, Devon, United Kingdom.
Sixth-plate daguerreotype. Actual size: 64 x 73 mm.
Case marked “M.son B. BREVETÉ S.G.D.G.”
Origin: Laval, Rhône-Alpes, Francia.
Daguerreotype plate sizes

The daguerreotype was a just a one-off photography process and did not envisage enlargements or prints, because the picture consisted of the plate itself. An image with different dimensions could be obtained only taking a new photograph.

The standard measures came from the initial choice of Louis Jacques Mandé Daguerre, the inventor of the procedure, who, together with his brother-in-law Alphonse Giroux, designed the first photographic camera. This camera was produced and marketed under the express license of Daguerre.

It was with this camera that the inventor took the first famous urban daguerreotype pictures in Paris.

The camera was equipped with a lens of 380 mm focal length, 81 mm diameter and 27 mm fixed diaphragm placed in front of the lens, for an aperture of f / 14.

The plate was about 16 x 21 cm. This format went on to define the measurement of the whole plate. The dimensions of the traditional Daguerre plate, converted into inches, produced the size of the so-called whole daguerreotype plate, corresponding to 6 ½” x 8 ½.”

For normal portraits it was convenient to use smaller, manageable and cheaper plates, which were quicker to expose. Thus the division into portions of the traditional Daguerre plate produced the classification of the other photographic formats.

In portraiture photography, the 1/6 plate format was commonly adopted, followed by the cheaper but reduced 1/9 plate. Non-standard sizes like the Double Whole Plate and the Extra Whole Plate produced fractions with slight variations in size.

When the collodion glass plates were established, the format was redefined. During the Universal Exhibition in Paris in 1889, the International Congress of Photography adopted a new reference plate measuring 18 x 24 cm.

In the Anglo-Saxon countries the whole glass plate was instead considered to be 8 “x 10” (about 20 x 25 cm).

Establishing a standard classification of historical photographic formats in an indisputable way is a difficult task which may produce results that can vary according to the criteria adopted. The original sources present discrepancies originating from the systems in use in the various geographical areas.

Moreover, the reference sizes for the plates used in daguerreotype, collodion process and albumen prints do not correspond. Observing the catalogues of importers and dealers of daguerreotype plates, it is not possible to obtain overlapping information.
It therefore seems reasonable to conclude that the plate manufacturers initially settled according to autonomous criteria, in relation to the type of plant and the specific processing techniques allowed by the existing production conditions with which they were operating.

Finally, it should not be overlooked that photographers sometimes used plates hand-cut from larger formats.

Frequently it happens therefore to see irregular daguerreotype plates, the margins of which are not parallel and the angles are not orthogonal.

The actual sizes found on historical daguerreotype plates are therefore generally similar only for the same type of format (whole plate, half, quarter, sixth, ninth, sixteenth plate) but are corresponding in exact way only occasionally and by singular coincidence.

The dimensions of the half plate and the fourth plate slightly deviate from those deriving from the corresponding, mathematically calculated, portion of the traditional whole plate.

It should be noted that the whole English plate (full plate) corresponds to the size of 8 “x 10” (one inch = 2.54 cm).

The real inch sizes of the plates do not necessarily correspond to the actual equivalence in millimeters, as slightly different standards were adopted in Europe.

It means that, for example, the sixteenth plate format can vary appreciably in America, England, France and Continental Europe.

In the following page, as you can see, a price list for daguerreotype plates of Friedrich Schneider, a platemaker active at Linkstrasse 9, Berlin, shows dimensions in inches different from those used in America.

Many dimensional variants were also widespread. There are therefore different classifications, based on approximation to the most common formats.

In practice there was no international unification convention for the whole period in which plates for daguerreotypes and ambrotypes were produced.

The following table takes into account the dimensional classification that appears most widely shared by curators, collectors and historians of contemporary photography and stems from the comparison between numerous original historical sources, from which we tried to obtain the maximum convergence in the conclusions.

However, by measuring original historical specimens it will always be possible to observe practically significant variations.
### American daguerreotype plate sizes

<table>
<thead>
<tr>
<th>Plate Type</th>
<th>Width (in)</th>
<th>Height (in)</th>
<th>European Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Whole Plate</td>
<td>8 ½”</td>
<td>13”</td>
<td>21.5 cm x 33 cm</td>
<td>Doppia lastra intera</td>
</tr>
<tr>
<td>Whole Plate</td>
<td>6 ½”</td>
<td>8 ½”</td>
<td>16.5 cm x 21.5 cm</td>
<td>Lastra intera</td>
</tr>
<tr>
<td>Half Plate</td>
<td>4 ¼”</td>
<td>5 ½”</td>
<td>11 cm x 14 cm</td>
<td>Mezza lastra</td>
</tr>
<tr>
<td>Quarter Plate</td>
<td>3 ¾”</td>
<td>4 ¼”</td>
<td>8 cm x 11 cm</td>
<td>Quarto di lastra</td>
</tr>
<tr>
<td>Sixth Plate</td>
<td>2 ¾”</td>
<td>3 ¾”</td>
<td>7 cm x 8 cm</td>
<td>Sesto di lastra</td>
</tr>
<tr>
<td>Ninth Plate</td>
<td>2”</td>
<td>2 ½”</td>
<td>5 cm x 6 cm</td>
<td>Nono di lastra</td>
</tr>
<tr>
<td>Sixteenth Plate</td>
<td>1 3/8”</td>
<td>1 5/8”</td>
<td>3.5 cm x 4 cm</td>
<td>Sedicesimo di lastra</td>
</tr>
</tbody>
</table>

*Daguerreotype sizes, Anthony Catalogue, New York 1854.*
PREIS-COURANT

der
DAGUERREOTYP - PLATTEN - FABRIK

von

Friedrich Schneider,
Linkstrasse No. 9 in Berlin.

<table>
<thead>
<tr>
<th>Grösse</th>
<th>Länge</th>
<th>Breite</th>
<th>Rh.</th>
<th>Aгр.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>8¹/₄&quot;</td>
<td>6¹/₄&quot;</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>1/2</td>
<td>5⁵/₈&quot;</td>
<td>4¹/₂&quot;</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td>1/3</td>
<td>4⁷/₈&quot;</td>
<td>3⁷/₈&quot;</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>1/4</td>
<td>4¹/₈&quot;</td>
<td>3¹/₆&quot;</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>3⁹/₄&quot;</td>
<td>3&quot;</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>1/5</td>
<td>3¹/₆&quot;</td>
<td>2⁵/₄&quot;</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>1/6</td>
<td>3¹/₄&quot;</td>
<td>2³/₄&quot;</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>1/8</td>
<td>3&quot;</td>
<td>2¹/₄&quot;</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>1/9</td>
<td>2³/₄&quot;</td>
<td>2¹/₈&quot;</td>
<td>1</td>
<td>25</td>
</tr>
</tbody>
</table>

Für Verpackung in Kästchen, welche zu demselben Preise zurückgeliefert werden können:

<table>
<thead>
<tr>
<th>Platt.-Grösse</th>
<th>zu 2 Dtzd.</th>
<th>zu 4 Dtzd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>7¹/₂ Aгр.</td>
<td>10 Aгр.</td>
</tr>
<tr>
<td>1/2 u. 1/3</td>
<td>5 &quot;</td>
<td>7¹/₂ &quot;</td>
</tr>
<tr>
<td>1/4 — 1/6</td>
<td>4 &quot;</td>
<td>6 &quot;</td>
</tr>
</tbody>
</table>


Bei grösseren Posten werden Procente gegeben.
Awkward definition of the daguerreotype process on a advertising leaflet.
Preservation

Historical photographic objects have overcome environmental, chemical, mechanical, biological and thermal risks and stresses ... to reach us in more or less satisfactory conditions.

Time leaves marks on everything we can know through our senses. Photographs are among the most delicate objects, among those which challenge time to become witnesses of history.

Making the wrong decision, once these crystallized fragments of time have reached our hands, can condemn them forever to destruction. Therefore, whenever we need to handle them by moving them for any reason, it is a good idea to think twice before acting and consider if what we are going to do will have consequences, for better or worse, on the preservation of these objects.

The occurrence of a progressive deterioration of materials is inevitable. We can take steps to slow down, as far as we can, the alterations that occur over time, almost to the point of canceling them, but it is extremely risky and generally counterproductive to attempt to reverse this natural tendency.

All in all, the photographs can be considered in some ways as living organisms: the treatments can delay aging almost indefinitely. Mechanical and chemical interventions, on the other hand, can be devastating in a long term even when they seem to allow immediate and subjective positive results.

Regarding the restoration, particularly in reference to the most ancient processes and especially in relation to the daguerreotype, it should be stressed that it is preferable to refrain from any intervention, unless the situation is so compromised that there is no alternative.

In this latter case, even to perform a 'simple' clean-up operation, it is absolutely necessary to contact a professional restorer, certified and specialized in photographic restoration, who has proven operational skills.

Apparently elementary interventions should not be confidently entrusted to a common restorer, but exclusively to operators specialized in the field of historical photography. It’s improbable that a common restorer, although normally prepared, has the specific knowledge to intervene on the oldest photographic objects.

Damage caused by mechanical injuries requires high level restoration skills and experience. Each empirical intervention attempt can end with a further serious alteration, often irreversibly.
The cardinal rule is therefore to limit as much as possible the risk of exposure and handling.

The recommendation to avoid improvised repairs with the common glues in commerce and with standard contemporary materials should be superfluous. The worst solution is the use of adhesive tapes, harmful and hard to remove. Almost always the original paper seal is disrupted or violated in the illusion of cleaning the daguerreotype plate, which can't even bear the slightest touch by the softest brush.

In this case, it is advisable to provide quickly a safety professional intervention.

The restoration of the daguerreotypes was in the recent past conducted with irreversible methods, tending to improve the visible appearance of the plate. The goal of restoring the silver plate as good as new, like no time has passed, was an aspiration of the costumer to whom the restoration procedures where adapted. This caused damage of various kinds. A deep cleaning always causes at least the partial removal of the superficial colouring pigments.

The superficial removal of the oxidations, performed using an extremely diluted solution based on thiourea and phosphoric acid, involves the loss of a more or less relevant quantity of substances which constitute the chemical structure of the photographic image.

The less risky and more immediate solution, to enhance the appearance of an ancient image, remains the post-production of its digital reproduction.

For very a delicate object, exposure in a window display is far riskier than storing it in an archival box placed in a drawer. If the canned object is stored in a padded protection, the risk is more reduced. A label reporting the contents of the box or container will assure greater safety. However, the damage remains a statistical possibility.

If an event has a chance in a million of happening, it does not mean that a certain circumstance will probably not happen. It rather means that it will surely will occur once out of a million possibilities. This occasion may occur unexpectedly immediate, or far time away, perhaps even in a future that the meter of human life makes difficult to evaluate. However sooner or later it will happen. Therefore it is wise to consider with conscientious attention possibilities that could appear certainly remote.

Those who are passionate about ancient photographic processes like daguerreotype may be tempted to try experimenting with them.

Improvised restoration attempts are surely dangerous for historical materials, but rash experiments in potentially harmful photographic environments, such as the daguerreotype, can prove to be long-term health devastating for those who perform them without adequate precautions.
The chemical substances used for sensitization and development of a daguerreotype are particularly toxic and their incautious manipulation can produce serious damage to health, as proven by the unfortunate direct experience of the pioneers of Daguerre’s process.

Iodine, chlorine and bromine are deadly, but mercury is more subtly lethal because it manifests dramatically its effects progressively over many years. Mercury is a neurotoxic substance which can cause serious damage to many vital organs.

Working in the presence of its vapors is extremely dangerous because inhalation causes accumulation in the central nervous system, producing permanent alterations, even mental ones, which are observed only after several years.

The most skilled contemporary daguerreotypists carry out the mercury-vapor developing treatment of the plates in a hermetically sealed box with extractor hood and without neglecting to wear a complete professional mask for the protection of the respiratory tract.

An ancient English saying, to define who behaves in an excessively extravagant way, uses the words “mad as a hatter.” Who does not remember the hatter of Alice in Wonderland?

The nineteenth-century hatters used mercury compounds in the felt processing and this produced terrible permanent consequences on their mental state. Mercurial erethism is a neurological disorder which affects the whole central nervous system, as a symptom derived from mercury poisoning.

Given the professional risk taken by the daguerreotype photographers, we might change this to “as crazy as a daguerreotypist.”
Daguerreotype Hallmarks

During the researches jointly developed by the authors of this publication, hundreds of ancient daguerreotype plates were directly observed, compared and studied. One of the results achieved is the identification of many hallmarks used to mark the plates.

The commonly used reference and classification text is, to date, “The American Daguerreotype” by Floyd and Marion Rinhart, published by University Georgia Press even in 1981.

Since then, much new data and many documents have been collected. This has allowed us to propose a much more complete and updated contribution able to overcome gaps, oversights and inaccuracies of the fundamental text of Rinhart.

The identification table proposed here, certainly still to be expanded and deepened, represents significant revisions and a decisive enrichment, compared to the incomplete statement of the hallmarks already listed by Rinhart. The ambition is certainly not to present here an exhaustive catalogue, but rather to record new observations and additions.

The identification work can be considered more completely conducted when it will be possible have benefit from the complete international cooperation of the institutions and researchers, overcoming the limited vision of individual experiences.

The goal is to establish a flexible and open-to-development classification scheme allowing to record any new element in a pattern that should not be compromised each time. For this reason we did not use a list in numerical succession, but instead we use a new ordering criterion based on significant alphabetic codes.

The authors intent is to propose an identification code easy to interpret and suitable to subsequent modifications, additions and updates. A simple order number maintains value and sense limited to the publication in which it appears and is destined to be more or less rapidly outdated.

The solution adopted should instead allow a classification enabling the immediate recognition of the hallmark, also safeguarding any future developments and variations. The correlation between the graphic figure of each hallmark and its identification code is therefore destined to remain fixed even in the case of future developments.

The graphics of the hallmarks shown here is generally derived from the digital tracing of the marks actually engraved on the plates. This was done by overlapping the graphic design above the original image acquired. Sometimes it was possible to identify a typeface equivalent to the original one.
The shapes and sizes of fonts used for each graphic mark represented here, are the most similar to the original that was possible to find and comes from a selection made between almost two thousand type of fonts.

Sometimes the poor quality of the marks impressed on the original plates forced the use of some approximation.

Some hallmarks, even if recognized as identical in shape on a certain number of plates, are still incompletely defined. In this case we chose to adopt the representation commonly considered more reliable by the curators of museums and collections or in any case the one that can be obtained from a carefully and in-depth observation and comparison between plates with the same hallmark.

Sometimes the marks are composed by the impression of a sequence of several hallmarks. The ‘mass’ value, which is the the silver content value, expressed as a ratio, is generally applied separately from the manufacturer's mark.

Furthermore, the hallmarks of the manufacturer, the importer, the distributor and/or the daguerreotypist can appear on the same plate.

The combinations increase the number of hallmarks that can be detected on the plate. For the identification references we have here largely used the contribution offered by Craig’s Daguerreian Registry (www.daguerreotype.com).

Although the frequency of occurrences may reinforce the belief that a given punch is characteristic of a precise geographical area of employment, it is unfortunately not possible to reach unquestionable certainties. Unfortunately, the production area does not correspond automatically to the area of use.

Especially in the early days of the daguerreotype era, French plates were massively exported to America and to the rest of Europe.

The tiny circular hole that some daguerreotypes have in a corner can not properly be considered a mark as it was practiced during resilvering electroplating treatments. This process was used to increase the sensitivity of the plate or to regenerate the silver layer, consumed by repeated polishing actions. This process involves the suspension of the plate, which is electrically connected as a cathode, in the galvanic bath.

The adopted identification table keeps the sequence of the hallmarks following an alphabetical criterion. A list simply based on the surname or the mark is not feasible because this is not always known and recognizable, as when a pair of letters is observed in a hallmark not further identifiable.

Therefore the alphanumerical sequence which constitutes the identification code is realized following an integrated set of parameters.

The identification code consists of six characters in capital letters, unless the manufacturer, the importer or the daguerreotypist is recognisable as absolutely unambiguous.

In the latter case, the brand name is directly adopted.
The characters used have a denotative function and designate peculiar elements of the punch, such as shapes or letters. In this way it is possible to keep side by side in the list markings of substantially similar appearance, even if signed with different letter initials.

The variants give rise to the addition of a dash followed by a progressive. If in the future it is necessary to insert a new hallmark, an alphanumerical combination of characters will be used in order to have the hallmark positioned in the correct alphabetical sequence.

The classification code is accompanied by a synthetic descriptive name in English. This solution was created to simplify the application of the classification system at international level.

Another important convention for recognition, classification and graphic representation consists in the distinction between direct positive hallmarks, that are engraved, and negative hallmarks, that are embossed. In the latter case the picture and the writing are observed by relief with respect to the background and enclosed (inscribed) in a rectangle, oval or disk.

The hallmark leaves an imprint sinking into the plate, not in relief but as a consequence of the hollow that surrounds the figure. The imprint therefore has a negative graphic appearance, as opposed to a direct drawing on paper.

The graphic representation convention must therefore be consistent with this feature. The sketches of the hallmark so far used in various publications were often made with subjective and non-technical criteria of representation.

For example, in the past, the design of a rectangular frame was used to outline a silver mass value. This solution is technically arbitrary because there is actually no frame line. More simply, the punch sinks into the metal of the plate with the exception of the figure or number which remains in relief and is therefore seen in negative.

To this particularity we must pay great attention, because the same design, for example a sign of mass 40, can be imprinted positively or embossed, depending on the type of punch used. The same is true of flowers and asterisks produced by impression, but also figures, apparently similar and having a substantially identical profile, originated instead by a punch which produces them by inverse relief.

This detail has a certain importance also in relation to the identification of the production area because the American plates are mainly marked with simple positive punches, while the European hallmarks, except the very first ones, generally have a more elaborate design and often are executed with embossed punching.

An impression produced by engraving is defined here as a positive punch. On the contrary, a negative hallmark is an inverse shape which sinks into the surrounding field, here conventionally represented in colour in correspondence with the depressed areas.
The hallmarks already classified by Rinhart, have been meticulously verified compared to a consistent number of occurrences. When they were clearly recognized as partial, that is, as incomplete portions of known hallmarks, they were omitted. In some cases it was necessary to amend and redefine them with the appropriate corrections.

As a matter of fact, the plates underwent the cutting of the corners (clipping) which had been deformed by the polishing vice. The elimination of the sharp and bent edges served to facilitate the housing of the daguerreotype in its conservation case.

The dating references for the years of production, when present, have been derived from the convergence of observations and research and have an indicative value. The period of some punches can be identified with greater precision because there are documents relating to the denomination of the brands and the period of activity of the manufacturer. A valid element can be provided by the examination of any annotations, sheets with date references, present in the package, when this is likely not altered.

Useful indications can also be obtained from characteristic elements of clothing, particularly the feminine ones. A useful reference guides are the books “Victorian and Edwardian fashion: a photographic survey” by Alison Gernsheim and “American Victorian costume in early photographs” by Priscilla Harris Dalrymple.

The authors hope that this cataloging contribution can be widely shared, also at international level, so as to form a common reference basis for the operators of this specific fascinating historical sector of photography.

Following the alphabetic criterion, the numbers precede the letters, so the table opens with the silver content value (mass). This is the most common type of hallmark, usually applied by the daguerreotype platemaker to define the quality of the product in terms of silver quantity.

The impressed number indicates the denominator of a fraction referring to the total mass of the plate. This is why we find it sometimes associated with the letter M (mass / masse). The most common plates were marked “40” or “40 M” meaning that they were made with one part of silver and 39 parts of copper.

Evidently the punch “20” indicated instead a decidedly greater thickness of silver, which allowed the repetition of the operations of polishing, exposing and treating in case of unsuccessful results taking the photograph.

The particularly high cost of the ‘mass 20’ daguerreotype plates soon made this high quality standard support uneconomical.

The mass value 20 is therefore found on the plates of the early period of the daguerreotype, on rather massive copper supports and generally with sharp edges and full flat corners, not deformed by fitting them on the polishing vices supports produced in subsequent years.
From the following table it is not possible to detect the dimensions of each single punch, because it would have been necessary to have a professional scientific equipment for reproduction and measurement in macro photography. Such kind of instrumentation is not in the availability of the authors.

The dimensions are very variable and always a few millimeters. Some hallmarks do not exceed two millimeters and therefore are often difficult to detect, particularly when the imprints are incomplete or otherwise imperfect. The hallmarks, which are not always necessarily present on all the plates, can only be detected with extremely careful observation, particularly in areas near to the corners.

Next to the classification code, for the punches already identified by Rinhart and to simplify comparison and conversion, in the table below you can find the corresponding identification number shown in the book “The American Daguerreotype.”

Interest and attention to the hallmarks impressed on daguerreotype plates is relatively recent and still mainly addressed to the front side (recto) of the plates, where they are usually detected.

The dorsal hallmarks were mainly found on plates of English origin belonging to the early period of the daguerreotype. The hallmark on the verso (back side of the plate) is remarkably rare, so much that was taken root the common belief that hallmarks are always on the recto side of the plate.

The scrupulous examination of the verso in the daguerreotype plates already hastily observed, could reveal some surprises.
Hallmarks identification

01NUMB
1 NUMBer.
Cipher number 1 engraved with a positive hallmark directly impressed on the back of the daguerreotype plate, not silvered side. Generally, early English plates were not stamped with the ‘mass’ value makers 20,30,40. They can however very rarely found with a number stamped into the backs of the copper plate. The numbers 1, 2 and 3 were debossed on daguerreotype plates up until circa 1844. These figures could be relevant to the year of production of the plate.

03NUMB
3 NUMBer.
See also: 05NUMB.
Engraved on the back of the plate, top lefthand corner. Some heavy early plates of English origin have the punch on the verso, not on the recto as usual.

05NUMB
5 NUMBer.
See also: 03NUMB.

20MAAE
20 MAss Askew Engraved.
See also: 30MAAE, 40MAAE.
Engraved with two separate punches. The first daguerreotype plates were generally pretty heavy and characterized by a high silver content.
20MAAS
20 MAss Askew Separated.
Also this Hallmark is impressed by two separate punches.
Observed in association with the EAGLEC hallmark.

20MARI
20 MAss Rectangle Inscribed.
This hallmark differs from the previous because it is executed with a negative punch. This means that the rectangle sinks into the plate, while the number remains raised on the surface. The two figures are aligned.
Probably from the French area.

20MAUM  (Rinhart n.48)
20 MAss Undescored M.
Hallmark inscribed in rounded rectangle. Unknown manufacturer, perhaps French, silver content 20 plate. Year about 1845.

30MAAE-1
30 MAss Askew Engraved, variant 1.
See also: 20MAAE e 40MAAE.
Positive hallmark engraved with two separate punches.

30MAAE-2
30 MAss Askew Engraved, variant 2.
Provenance: Central Europe, 1845 ca.
Hallmark possibly engraved with two separate punches.
Seen in combination with BLETEN-2.
30MADD
30 MA\textsuperscript{ss} Double Disc.
Negative hallmark with the 30 figure in relief inside two circles.
Example with traces of jeweller's rouge polish for plate polishing.

30MAIR-1
30 MA\textsuperscript{ss} Inscribed in Rectangle, variant 1.
Negative hallmark inscribed in rounded rectangle with the 30 figure in relief.
Example with traces of jeweller's rouge for plate polishing. Size: ca. 3.8 x 2.6 mm.

30MAIR-2
30 MA\textsuperscript{ss} Inscribed in Rectangle, variant 2.
Figure 3 with curved top profile.

30MAMI
30 MA\textsuperscript{ss} M Inscribed.
Circa 1842. Provenance: Central Europe.

30MAOI-1
30 MA\textsuperscript{ss} Oval Inscribed, variant 1.
Negative hallmark with the 30 figure well shaped serif font in relief.
30MAOI-2
30 Mass Oval Inscribed, variant 2.
Negative hallmark with the 30 solid figure, sans serif font, in relief.

30MMDI
30 Mass M Dotted Inscribed.
30 silver content with dotted M, inscribed in rounded rectangle.

30MMEI
30 Mass ME Inscribed.
30 mass ME, inscribed in rounded rectangle. “ME” is perhaps for the French word ‘masse’, which would lead us to assume France as area of origin of this daguerreotype plate.

40IDIA
40 Inscribed in DIAmond.
40 silver mass, inscribed in diamond, sometimes eroded on the sides. French area, years before 1850.

40MAAE
40 Mass Askew Engraved.
See also: 20MAAE, 30MAAE.
Positive hallmark engraved with two separate punches.
40MAAF
40 MA\textit{ss} \textbf{Askew Fat}.
Apparent deformation of 40MAAE, but detected in various instances always in this peculiar form. The peak of the digit “0” is often missing.

40MAAI
40 MA\textit{ss} \textbf{Askew Inscribed}.
Hallmark inscribed in blunted rectangle.

40MADI-1 (Rinhart n.18b mass)
40 MA\textit{ss} \textbf{Disc Inscribed}, variant 1.
It should be noted the open figure 4.

40MADI-2 (Rinhart n.18a mass)
40 MA\textit{ss} \textbf{Disc Inscribed}, variant 2.
It should be noted the closed figure 4.

40MAEG
40 MA\textit{ss} \textbf{Elliptical Grid}.
40 silver mass, inscribed in ellipse with grid background.
Hallmarks

40MAEI
40 MAss Elliptical Inscribed.
Negative hallmark, 40 silver content in relief on sunk elliptical background.

40MAEL
40 MAss Engraved Locked.
Positive hallmark directly engraved. Closed 4 figure.

40MAEN
40 MAss ENgraved.
Positive hallmark directly engraved. Open 4 figure.
Probably from the French area.

40MAIN (Rinhart n.4d)
40 MAss INgot.
Negative hallmark, ‘40’ and ‘M’ on sunk ingot shaped background.
40MAMD-1
40 MAss M Dotted, variant 1.
Negative hallmark, ‘40’ and dotted ‘M’ in rounded rectangle.

40MAMD-2
40 MAss M Dotted, variant 2.
Negative hallmark, ‘40’ and ‘M’ with underlying large disc in rounded rectangle. Figure 4 fused with zero.

40MAMI
40 MAss M Inscribed.
Negative hallmark, ‘40’ and superscript ‘M’ in rounded rectangle. Here flanked by an unidentified incomplete “doublé” hallmark.

40MAMR
40 MAss M Raised.
Negative hallmark, ‘40’ and raised ‘M’ in rounded rectangle. It should be noted the open figure 4.

40MAOI
40 MAss Octagon Inscribed.
Negative hallmark with the 4 figure closed in serif font. French manufacturer, years about 1845.
**40MARI-1**

**40 Mass Rectangle Inscribed, variant 1.**
Negative hallmark with the 40 figure in relief in serif font. Similar to 40MARI-4, but characterized by a closed figure 4 with transverse segment and ‘0’ misaligned.

**40MARI-2**

**40 Mass Rectangle Inscribed, variant 2.**
Negative hallmark with the 40 solid figure, sans serif font, in relief. It is characterized by a closed figure 4 with figure 0 misaligned.
Size: ca. 3.7 x 2.5 mm.

**40MARI-3**

**40 Mass Rectangle Inscribed, variant 3.**
Negative hallmark characterized by an open figure 4 in sans serif.

**40MARI-4**

**40 Mass Rectangle Inscribed, variant 4.**
Negative hallmark characterized by an open figure 4. Figure 4 with transverse segment misaligned.
Example with traces of jeweller’s rouge for plate polishing.
Daguerreotype hallmarks

40MARI-5
40 MAss Rectangle Inscribed, variant 5.
Negative hallmark inscribed in rectangle with sharp edges characterized by an open figure 4 in serif.

40MEFN (Rinhart n.14)
40 ME F N
40 ME F.N. dotted, negative hallmark inscribed in rounded rectangle.
French platemaker, year ca. 1847. There is also the 20MEFN variant.

40MMEI
40 Mass ME Inscribed.
Negative hallmark inscribed in rounded rectangle.
French platemaker, similar to 30MMEI, but with silver content 40.

40MRAS
40 Mass RAdiant Sun.
Many thin sun's rays and a raised 40 figure is difficult to read.
Hallmarks

60MADI (Rinhart n.47)
**60 MAss Disc Inscribed.**
Negative hallmark with silver content value inscribed in double disc.
Unknown platemaker, Light silver content, ca. 1850.

AB&PRI (Rinhart n.1)
**A B & P Rectangle Inscribed.**
Alexander Beckers and Victor Piard were in business as associates in New York from 1849 to 1856.

Abadie

**ABADIE**
Martin d'Ossonne Abadie, daguerreotypist coming from Paris.
Active in Moscow between the years 1850 and 1855. Studio in Petrovskiy neighbourhood, Reshëtnikova palace, at the corner with Tsum alley.

ABDOTT
**A B DOTTeD.**
“A.B.” dotted and embossed, inscribed in rectangle. May be this is the Alexander Beckers hallmark from 1856 to 1858, when he was on his own, after Victor Piard left the company with him in 1856.

ABRESCH

**ABRESCH**
Abresch, probably German daguerreotypist, perhaps operating in the Dresden area. Years around 1845.
AgBR40  (Rinhart n.2)
Asterisk Gaudin BReveté 40.
The Antoine Gaudin daguerreotype plates are usually marked with the words “DOUBLE” on the top and “A.GAUDIN” on the bottom. Here we have the word “BREVETÉ” at the bottom, while “A.GAUDIN” is on the top. Please see also the notes in the following section AJPD40.

AgDO20

AgDO30

AgDO40
Asterisk Gaudin DOublé 40.
The French brothers Alexis Gaudin and Marc Antoine Gaudin produced daguerreotype materials in Paris from 1844. Plate widely exported and popular in America. The most widespread variant is the plate with siver content 40; the variant 30 is rare and the variant 20 is very rare. Please see also the notes in the following section AJPD40.

AjPD30
Asterisk J P Doublé 30. Size: ca. 9 x 3 mm.
Please see also the notes in the following section AJPD.
Hallmarks

AJPD40  (Rinhart n.29)
Asterisk J P Doublé 40.
Production 1840-1845 ca. Size: ca. 9 x 3 mm.
This hallmark is liable to be confused with the Gaudin. The figures indicating the silver content looks different and the stylized soil underneath the lamb has a bigger profile and underneath this, in some hallmarks, it seems to see a point in a central position.
The yearbook “Annuaire général du commerce, de l’industrie ...” 1847 reports in the section “Fabricant du plaqué et doublé”: Gaudin (A.), successeur de J.-B. Pilloud père (B) 1819-23, (A) 1827-34; Fabricant de plaque or et argent; spécialité pour les plaques de daguerreotype, laminage à façon de toutes sortes de métaux, rue de la Perle 7, au Marais 7. Jean-Baptiste Pilloud (J. P.) was as a silversmith and maker of “plaqué et doublé” in the early 1800s. Gaudin took over the business presumably after 1845, therefore the general appearance of the hallmark remained unchanged, without the initials “J P”, but with the word GAUDIN.

AMOOICI  (Rinhart n.4b)
A MOOn Crescent Inscribed.
Plate manufactured in the years between 1848 and 1850.
Here overlapped on 40MARI-2 hallmark.

ANCHGD
ANCHor G D
Anchor inscribed in vertical oval, flanked on left side by the letter ‘G’ and on right side by the letter ‘D’. The anchor mark distinguishes Birmingham’s silversmith production

ANRH30
ANor R H 30
Anchor inscribed in rectangle, flanked on left side by the letters ‘R.H’ and on right side by the indication of the silver mass 30. Birmingham, U.K., 1850 ca.
Daguerreotype hallmarks

**ANSON**  
(Rinhart n.3)
Rufus P. Anson was a daguerreotypist on Broadway, New York, from the year 1852 at number 633, then at number 589. His hallmark is often associated with the mark of the French manufacturer N.P. Lerebours (Nicolas Marie Paymal, see code NP40OI). He was active in the years between ca. 1849 and 1857.

**ANTHONY**  
(Rinhart n.4c)
Edward Anthony, Co. N.Y. manufacturer and dealer and of photographic supplies, specialized in the production of daguerreotype cases and brass mats. He was active from 1847. In year 1850 Anthony listed for sale the daguerreotype plates: Crescent, Star, Phoenix, Scovills and other French brands. In the year 1854 he was selling the plates of Scovills, French Star, Triple Star, HB, Christofle. He also commercialized daguerreotype plates with his own stamp.

**AS4SAI**  
Asterisk 4 Sectors Arrows Inscribed.

**AS6SAI**  
Asterisk 6 Sectors Arrows Inscribed.
**Hallmarks**

**AS6SDE**

**A**Sterisk **6** Sectors **D**isc **E**ngraved.
Plate manufactured in the 1840s. In this example a dorsal hallmark seen on a early daguerreotype (Claudet), not on the plated side.

**AS6SPE**

**A**Sterisk **6** Sectors **P**etals **E**ngraved.
Plate manufactured in the years between 1843 and 1850 ca. Size: Ø ca. 3.4 mm.

**AS6STE** (Rinhart n.21)

**A**Sterick **6** Sectors **TE**ars.
characteristic of A.Gaudin (AJPD40) and JP lamb (AJPD40) hallmarks.
This is the most common shape, while the previous one may be older. Hallmarks generally classified by curators and restorers of daguerreotypes as ‘Asterisk’ are present on plates of various periods, until 1858 ca.
The symbol may appear isolated or together with the silver content value. It also may occur near to the manufacturer, importer or daguerreotypist brands. It is not easy to distinguish between the numerous variants because of the shape deformations of the hallmark.
ASRASU
**A**S*terisk RAdiant SU*n. Radius: 3 mm

ASRSSE
**A**S*terisk Radiant Sun Split Ends.
At the center is present a graphic symbol (letter B?) yet to be identified.

ASSCAI (Rinhart n.4d)
**A**S*terisk Starry Circled A Inscribed.
'A' in double starry disc. Period from 1850 and 1855 ca.
Hallmark identified by Rinhart, which points out the presence of an 'S' impressed next to the 'A' on the later plates post 1853.

ASSTCI (Rinhart n.4a)
**A**S*terisk STar Circle Inscribed.
Hallmark detected on a daguerreotype plate with a printed sticker that reports: “Manufactured expressly for Anthony, Clark & Co. and warranted perfect”.
It should however be noted that the Annuaire général du commerce et de l’industrie 1855 lists Gaudin (Alexis), company specialized for the supply of daguerreotype materials, plates branded with a star (plaques à l’étoile)... owner and manager of the newspaper “La Lumière”, photography magazine, each copy 16 fr. Perle 9 (au Marais). The expression “plaques with the star” (plaques à l’étoile) clearly seems referred to the hallmark.
In the previous years was used the well-known AGDO (20, 30, 40) hallmark.
BALCCD
BALance, CC in Diamond.
CC and dots with balance inscribed in diamond. Two stars on top, stylised flower at center, bee below. Years around 1844. Negative hallmark very complex in just 2.4 mm in length, with features in common with Christofle brand.

BALFCR
BALance, F C in Rectangle.
Negative hallmark with dotted letter ‘F’ and letter ‘C’ between two balance pans, inscribed in rounded rectangle. French platemaker, probably Nantes area, Brittany, France. Years around 1845.

BCREIN
B C REtangle INscribed.
Initial letters ‘B’ and ‘C’ inscribed in rounded rectangle. Hallmark presumably from Central European Area.

BEARD
Positive linear hallmark directly imprinted: “R.BEARD”.
Richard Beard, early English daguerreotypist (22 December 1801, East Stonehouse, Devon - 7 June 1885, Hampstead, London).
**BECKEL**

Negative hallmark can be attributed to the Beckel brothers, operating in New York. Plate manufactured in the years between 1845 and 1850 ca.

**BELLOC**

Hallmark of French daguerreotypist Joseph Auguste Belloc (1800, Montrabé - 1867, Paris), known for his erotic works, also in stereoscopic views, particularly audacious for those days, and finely colored.

Auguste Belloc, was active in Paris since 1851. 5, Boulevard Montmartre.

**BERTRAND**

Hallmark, engraved into the shape of cursive signature, of French daguerreotypist Adrien Bertrand (1822-18..?) active in Lyon, Pavillon vitré, Place des Terreaux, 5, à Lyon. 1850ca. and then in Paris at rue Dauphine, 34 from 1853. Bertrand continued the production of daguerreotypes until about 1860, alongside the use of other processes on glass and paper.

The photographic archive was taken over by Auguste Verneuil who commercially exploited it.

**BERUBET**

Hallmark of French daguerreotypist (photographer and optician) Jean Baptiste Berubet, operating in Clermond Ferrand from 1855 ca.

This kind of positive hallmark, engraved into the shape of cursive signature, was adopted by many French daguerreotypists up to the year 1860.
**CHARLES BEYER**

**VARSOVIE**

Hallmark of the Polish daguerreotypist Karol Beyer (Warsaw 1818-1877). Operating in Warsaw from 1845 to 1869. Hallmark divided between two coupled lines. Studio address: Warszawie, Palacu JW Hr.Zamojskich.

**B.F.40**

BFD40I (Rinhart n.7)

B F Dotted 40 Inscribed.

B.F. dotted, mass 40, inscribed in elonged octagon.

Benjamin French, Operating in Boston in the years around 1854. Listed as a dealer in photographic materials from 1848.

**L.B.BINNSEE &C° N.Y.**

BINNSEE (Rinhart n.32)

L.B. Binsse & C° N.Y.

Louis B. Binsse & C° was listed as supplier of materials and daguerreotype plates in New York City, N.Y., for the years between 1843 and 1845.

In the year 1843, the company is listed in Beech Street at n.40. Between the years 1844 and 1845, the address becomes n.83, William Street.

**LOUIS L BISHOP**

BISHOP

Louis L. Bishop, with the name also Americanized as Lewis, of Parisian origin, was in business in New York City, N.Y., at n. 285 Broadway, from 1845. Bishop was importer and dealer of plates, equipment and chemicals for daguerreotypes in New York City, N.Y., between 1845 and 1848. He worked on gilding and silversing, therefore he could also have produced plates on its own. Between 1847 and up to 1848 he is listed as an importer at n.12 in Maiden Lane.
Daguerreotype hallmarks

**BLEICC**

**B** **L**etter **I**nscribed **C**lipped **C**orners.
Negative hallmark with 'B' in box with clipped concave corners.
Unknown platemaker, perhaps of English area, active before 1850.

**BLEIDR (Rinhart n.6)**

**B** **L**etter **I**nscribed **D**abbed **R**ectangle.
Negative hallmark with Letter ‘B’ inscribed in rectangle with a pitted background. Unknown platemaker, perhaps European, 1850 ca.

**BLETEN-1 (Rinhart n.5)**

**B** **L**etter **E**ngraved, variant **1**.
Negative hallmark with Letter ‘B’ directly engraved, variant 1.
Unknown platemaker, perhaps European, dated from 1841.

**BLETEN-2**

**B** **L**etter **E**ngraved, variant **2**.
**BLUMBE**
**JH. BLUMBE**
Very rare embossed hallmark observed on early heavy plate of American origin. Dimensions: 1x7 mm.

**BMONOG**
**B MONOGram.**
Monogram B associated with a letter of difficult interpretation, perhaps ‘A’ or ‘N’. Detected on plates of Central European origin, perhaps Belgium or Holland. Years around 1845.

**BRASSART-1**
Auguste Brassart cooperated with Daguerre since 1838, obtaining the firsts plates of mass 40. He served in the Army from 1840 to 1847, starting then a manufacture on his own. The repression that followed the 1848 socialist revolution and then the putsch of dec. 2, 1851, led him to emigrate to America.

**BRASSART-2**
Auguste Brassart in 1854 moved to America. For some years he partnered with Holmes, Booth & Haydens, Waterbury, Conn. He then worked as a photographer in Naugatuck, Conn. This embossed hallmark differs from the previous one, which is engraved, and should belong to the period of the American production.
William H. Butler was a daguerreotypist and dealer of photographic equipment in New York City, N.Y. In business since ca. 1843, acquired “Plumbe's National Daguerreian Gallery” in 1850 ca.

'B' and 'J' with caduceus stick inscribed in a double Samnite shield surmounted by the word DOUBLÉ. Particularly rare European brand, period of the years before 1850. A simple shield variant, with no writing above and with the letters E and B, was observed impressed on some salt prints, but not on daguerreotype plates.

Caduceus stick flanked by the letters ‘P’ and ‘L’, inscribed in a box surmounted by the word DOUBLÉ. Years immediately following 1840. Similar to the previous hallmark, but with the wings differently positioned. Berliner platemaker?
CCHSLE
**C C H S**lash Engraved.
Positive hallmark with ‘C’ and reversed ‘C’ with dash.
Monogram of unclear reading, with double C: straight and inverted, tied together to form perhaps a capital H.
Very rare brand on plates from Central-European area.

CD40DI (Rinhart n.8)
**C D**otted **40** Diamond Inscribed.
‘C’ Letter dotted, silver content 40, inscribed in diamond.
Negative hallmark datable to the period between the years 1851-1856 ca.

L. CHAPMAN
N.Y.

**CHAPMAN** (Rinhart n.33)
Positive hallmark of Levi Chapman, american platemaker, operating at n.102 William St. , NewYork, between the years 1850 and 1855 ca.
CHRISTOFLE
(Rinhart n.9)

Charles Christofle,
Paris, october 25, 1805
Brunoy, dec. 13, 1863,
was a French goldsmith
and silversmith.

In the year 1830 he took over the business of costume jewelry conducted by a relative at rue de Bondy 56, Paris.

In 1840 the company had already industrial dimensions and was exporting all over the world. Christofle won awards at several Parisian industrial exhibitions for the work of gilding and silvering by electroplating performed with the process of Henri de Ruolz.

He appears to be among the very early producers of daguerreotype plates. The Christofle daguerreotype plates were largely exported to England and America. The hallmark, in use since 1845 and up to 1862, consists of two parts separately impressed. In the first, the inscription CHRISTOFLE in capital letters follows a bow under an oval with inserted a balance and a double C.

At the top there are five stars, the central one is on the balance shaft, under which it is noted a garland of leaves. The name CHRISTOFLE is then repeated in linear shape by another hallmark that may precede or follow the oval mark.

In this reproduction you can see the hole for the plate hanging used to perform the re-silvering process by galvanic bath (electroplating).
More pictures of the hallmark are reproduced on the previous page.
CLAUDET
Antoine Jean Francois Claudet (Lyon, 12 August 1797 - London, 27 December 1867) settled in London from 1827, where he began a business in optical materials. He was a pupil of Daguerre and licensee of his process. Claudet improved the sensitization of the daguerreotype plates. He worked in the London studios of Adelaide Gallery, Trafalgar Square, from 1841 to 1851, and later, from 1852 to 1858, at No. 107 Regent Street.

CLETEN
C LET ter EN graved.
Simple positive hallmark with ‘C’ letter directly engraved. 1.5 x 2.0 mm.
Dorsal hallmark seen on an early daguerreotype, not on the plated side.

COEULTÉ
Parisian daguerreotypist, as early as 1852, he claims to be one of the oldest photographers in the French capital, at Quai de la Grève n.30.
From about 1857 he began to print on paper from collodion plates. Founder of the “Société des Photographistes”, he works at the addresses: boulevard des Filles du Calvaire 1, between 1859 and 1862; at Petite rue St. Pierre 6, in 1863.

CORDUAN & CO·N·Y
CORDUAN (Rinhart n.10)
Corduan was an early American daguerreotype platemaker. He was active at n. 28 and 30 Cherry St. in New York City. Later partnered with Perkins establishing the Corduan & Perkins Company, 1839-1843 ca.

CRBDEN
C.R.B. Dotted EN graved.
The ‘C.R.B’ hallmark belongs to an unidentified producer, prior to 1850, probably French, sometimes associated with the GARANTIE hallmark.
In some instances the “C” letter may seem quite similar to a “G” letter.
Daguerreotype hallmarks

DAMME
German daguerreotypist operating in Gdansk in the years before 1850. Atelier Daguerréotyp Portraits in Glas Pavillon von C.Damme aus Berlin, Danzig, Poggenpfuhl Nº 197.

DLETEN
D LETter ENgraved.
Letter ‘D’ engraved with a positive hallmark directly impressed on the back of the daguerreotype plate, not silvered side. Early daguerreotype from Central Europe area. Unidentified manufacturer, 1840 ca.

DUBRAY
Burin engraving signature of Angélique “Joséphine” Gabrielle Dubray. Joséphine Dubray was born in Paris in 1818 and was one of the first itinerant female daguerreotypist in the world. Daguerre's pupil, she has been active in Genoa since 1842, where on 5 July of that same year she gave birth to Luigi, son of unknown father. Young single mother, she managed to maintain dignity and autonomy thanks to her professional commitment in a world still subject to male dominance. Beginning in 1844, she worked in Parma, Florence, Bologna, later moving between the major cities of Emilia and Romagna until she opened a studio in Cesena with the painter Antonio Pio. She moved again to Bologna and Milan, where in 1847 was born Alberto, conceived with Antonio Pio, married in Paris only in 1865. In that year she had already completed his professional activity. The Cesena studio was sold in 1856 to Luigi Zanoli who managed it until 1876. J. Dubray ended his adventurous life probably in Vienna in 1890 ca.

EAGLEB
EAGLE Bald.
Bald Eagle inscribed in rectangle with rounded corners at the top. Eagle viewed from the side, claws with olive branch and arrows. 1857 ca.
EAGLE (Rinhart n.18a)
**EAGLE** Left beak.
This Eagle hallmark, such as the following one, was observed by F. & M. Rinhart, associated with Grise brand.
His graphic representation in “The American Daguerreotype” differs consistently from this one here given, as indeed found. Late 1840s to early 1850s. Often accompanied by a 40MAEG hallmark. It cannot be ruled out that the different ‘Eagle’ hallmarks classified by F. & M. Rinhart missed a rigorous identification and were therefore inaccurately represented.

EAGLE (Rinhart n.17)
**EAGLE** Right beak.
Eagle with beak turned to the right, inscribed in rounded rectangle. Hallmark Mark attributed by F. & M. Rinhart perhaps to the Gennert brothers, New York. Period between 1853 and 1858 approximately.
EDJB40 (Rinhart n.25)
Eagle Doublé JB 40.
Eagle and ‘doublé’ marking, initials JB, mass 40.
Years around 1850. Some variations have been found regarding the positioning of the content value. Hallmark associated with the 40MRAS.
In the best specimens we observe a well detailed drawing of the Bald Eagle present in the American coat of arms, complete with all the graphic attributes: shield on the chest, claws with olive branch and arrows.

EE.30
E and E REVersed.
Hallmark with two ‘E’s back to back, dot and 30 silver content value.
Early British daguerreotype plate.

ENSSCH
ENSlin SCHreiber & C°.
Negative hallmark of “Enslin Schreiber & Co” engraved in bowed sector shape.
Gottlieb Enslin was a dealer in daguerreian apparatus at n.3, Maiden Lane, New York City, N.Y., from 1856 to 1858.
From 1856 to 1857 Enslin was in partnership with Schreiber (A.) & Co. as a daguerreotype platemaker.

ERDE20
E R Dotted Engraved 20.
E R dotted, engraved, silver content 20.
Hallmark found on an early Central European daguerreotype plate.
Hallmarks

ES&COI (Rinhart n.12)
ES & Co Inscribed.
Enslin Schreiber & Co. Maiden Lane 3, New York, 1856 ca.

EXCELSIOR
Embossed hallmark. In the 1950s several studios and galleries named Excelsior were active in America. Among one of those was Sutton & Bros Excelsior Daguerreian Gallery in Detroit Mich. wholesale and retail daguerreian goods, 1855.

FCOVIN
FC Oval INscribed.
Hallmark found on an Italian daguerreotype plate.

FORTELLE

FROMENT
Signature performed by hand with a burin on a daguerreotype plate.
Paul-Gustave Froment (Paris 1815-1865) was a genius and versatile scientist, forerunner of innovative applications in various fields of mechanics, electric motors and telecommunications.
At the National Library of Scotland there is a photographic picture depicting perhaps Parisian buildings with a hand-written note by the Scottish scientist James Hall Nasmyth which reads as follows: “The first photograph I ever saw, 1835, taken by G. Froment at Paris.”

FSSTAI (Rinhart n.15)
FS STAR Inscribed.
Hallmark observed by Rinhart. It may be a a partial of JFSS40 hallmark.
**GARANTI**
Daguerreotype platemaker of French area. Years from 1842 ca.
Negative hallmark in rectangle with rounded extremities.
Slightly differentiated variants are observed, perhaps caused by the punch wear or due to the deformation of the impression.

**GARANTI-C**
Daguerreotype platemaker of French area. Years around 1855.
Negative hallmark in rectangle with sharp edges. ‘Garanti” in italics.

**GARANTIE**
Daguerreotype platemaker of French area.
Years between ca. 1846 and 1848.

**GARANTIE-R**
Daguerreotype platemaker of French area. Years around 1855.
Positive hallmark, ‘GARANTIE’ enclosed in rectangular line.
Hallmarks

GARARI (Rinhart n.16)
GARANTIE A R Inscribed.
GARANTIE, dotted letters 'A' and 'R', inscribed in a blunted rectangle.
Daguerreotype platemaker probably in French area, ca. 1850.

GIROUX
In 1839, Daguerre et Isidore Niépce signed an exclusive contract in favor of Alphonse Giroux, Daguerre's brother-in-law, for the production of cameras. This hallmark, was imprinted on the company's products, but does not appear to have been used for daguerreotypes. It is included in this classification as a sign of historical tribute to the inventor of the daguerreotype.
A variant is without the 'H' of Alph. and without stars.

GLETEN
G LETter ENgraved.
Letter 'G' engraved with a positive hallmark directly impressed on the back of the daguerreotype plate, not silvered side. 2.0 x 2.2 mm.
Archaic British daguerrotype. Unidentified manufacturer, 1840 ca.

GLETTE-1
G LETTER, variant 1.
Italic letter 'G' engraved with a positive hallmark directly impressed. This version differs from the following one for some small details.
Daguerreotype hallmarks

GLETTE-2

G LETTER, variant 2.
Italic letter ‘G’ engraved with a positive hallmark directly impressed.
Example with traces of jeweller’s rouge for plate polishing.

GLETTE-3

G LETTER, variant 3.
Italic letter ‘G’ in lowercase character engraved with a positive hallmark directly impressed.
The three variants of this group have been seen on daguerreotype plates from the Central European area.
Period of the years before 1850.

GOUIN

Alexis Louis Charles Arthur Gouin. Born in New York, moved to Paris to study Fine Arts, he was one of the early daguerreotypists, appreciated for the coloring technique. In 1849 his studio was at n.50, rue Basse du Rempart. Then, in 1852, at n.37, rue Louis le Grand. Gouin invented a machine to polish the daguerreotypes plates and a photometer. He was a valued photographer of stereoscopy and art erotic studies. He died in 1855.

GRISET (Rinhart n.18b)

Word ‘DOUBLÉ’, diamond with point, ‘GRISET’, all enclosed in rectangle.
Antoine Alexandre Griset pursued the activity of precious metal rolling started by his father Antoine, in 1760, in the Marais district of Paris. The Griset company is still operating in the same business sector today. Rinhart dated the Griset production of daguerreotype plates, erroneously identified as GRISE by him, between the years 1845 and 1847.
**GUILLON**
Guillon was a daguerreotypist active at n.44, Rue du Vieux-marché-aux-Poissons, Strasbourg. Dealer in photographic supplies, he also gave daguerreotype lessons and demonstrations of photographic processes. Years before 1850.

**GURNEY N.Y.**
Geremiah Gurney was active in New York from ca. 1840. After 1852 he was in partnership with others, later with his son.

**HAIH40**
**HA**mmer **I H 40**.
Negative hallmark with silversmith's hammer, ‘I’ and ‘H’ letters, mass 40, enclosed in rectangle. May be Isidore Houssemain “maison spéciale de plaques de daguerréotype à la marque I. H.”. Rue michel-le-comte, 25, Paris. 1859 ca. Probably this hallmark is following the early version ‘HOUSSMAINE’.

**HBE20I**
**HB** Eagle **20** Inscribed.
Please see HBE40I.

**HBE30I**
**HB** Eagle **30** Inscribed.
Please see HBE40I.
Daguerreotype hallmarks

HBE40I (Rinhart n.19)
HB Eagle 40 Inscribed.
H.B. dotted, eagle, mass 40, enclosed in a blunted rectangle.
French daguerreotype platemaker. Production from ca. 1850 to ca. 1858.
Henry Beaud et C.ie, Cité Holzbacher, 23, rue de Trois-Bornes.
The eagle, with folded wings, is holding in its claws a globe.
The head is surmounted by a little star. Hallmarks with different mass indications are known: HBE20I, HBE30I, HBE40I, and HBE60I.

HBHE40 (Rinhart n.20)
HBH Eagle 40.
Negative hallmark with initials ‘H.B.H.’, eagle and mass 40 value, all enclosed in elongated and blunted rectangle. Holmes Booth and Haydens Company, Waterbury (Connecticut), was active from 1853. Founded by Israel Holmes, John C. Booth, brothers Hayden Hiram Washington, Henry Hubbard and Henry Hotchkiss. Period of production between 1856 and 1861 ca.

HEDARIARD
Inscription directly engraved on the back of the daguerreotype plate, not on the silvered side.
Hallmarks on the copper back of the daguerreotype plate are detected only in some of the earliest European plates. ca. 1842. Please see hallmark HSDRIN.
From an 1842 advertisement: “Hediard, fait plaques en plaqué d’argent pour le daguerréotype, les livrent sur le plané et le décapé, et brunies à l’anglaise prêtées à recevoir l’iode; remet à neuf les plaques défectueuses, fait des envois dans les départements au comptant, cour Lamoignon, 6.”
HERRMANN
Linear positive hallmark, divided into two sections, of W. Herrmann & Co. Berlin, German platemaker in the 1850s.

HHDDORI (Rinhart n.22)
H H Dotted Rectangle Inscribed.
Platemaker probably in the European area. Years ca. 1853.

HOSSAUER
Hossauer, German goldsmith and silversmith at Kronen street 28, Berlin. Early manufacturer of daguerreotype plates. In 1844 the company had almost a hundred employees. Hallmark's dimensions: 2.0 x 5.7 mm.

HOUSSEMAINE
Positive hallmark 'HOUSSEMAINE', usually in connection with 'GARANTI'. Years following 1850. Joseph Auguste Belloc, in his treatise on photography edited in 1855, encourages the use of the daguerreotype plates manufactured by Houssemaine: “Le meilleur planeur de Paris, M. Houssemaine, rue Bourg-l’abbé, 20.”

HOWELL & READ
Traders of daguerreotype plates? Suppliers of paste for silvering and polishing plates. Active in Philadelphia in 1848 at no. 40 of South Second st.
**Daguerreotype hallmarks**

**H.S**

HSDRIN (Rinhart n.23)

**H S Dot Rectangle INscribed.**

Rinhart speculated that Southworth & Hawes, Boston, used this hallmark. However this is very unlikely, since the initial order is incorrect. S. & H worked with daguerreotype plates AJPD40, Scovill and White, but there's no record of a personalized branding. It is therefore more likely that this hallmark was used by Hediard et Salernier, who were in partnership from 1844.

From an 1844 advertisement: “Hediard et Salernier, planeurs sur tous métaux, fab. spécialement les plaques en plaqué d’argent pour le daguerréotype, les livrent sur le plané, polies à l'anglaise ou décapées, remettent les plaques à neuf, expédient tous les articles relatifs au daguerr., pl. Dauphine, 17, et cour Lamoi- gnon, 6.”

**HUNZIKER**

Negative hallmark with writing enclosed in slightly blunted rectangular area. Brand seen on plates of North-Central European area. Probably it is a German manufacturer.

**30°IH**

IHA30E

**IH Asterisk 30 E.**

Mass value 30° accompanied by the letters ‘I’ and ‘H’ flanked by a disk with four jagged sectors. European daguerreotype platemaker, ca. 1850. Similar to the next hallmark.

**40°IH**

IHA40E (Rinhart n.24)

**IH Asterisk 40 E.**

Mass value 40° accompanied by the letters ‘I’ and ‘H’ flanked by a disk with four jagged sectors. Manufacturer of European daguerreotype plates, period of the years immediately following 1850.
JB&C30
J.B. & C. 30.
Rare hallmark observed on early heavy plate. Maybe it was about the same manufacturer of EDJB40 plate, but of previous production. French plate ca. 1850s.

JFSS40 (Rinhart n.15 partial / Rinhart n.27)
J F S Star 40.
Initials ‘J.F.S.’ with star and mass 40, all enclosed in a blunted rectangle. Manufacturing related to the years 1854-1859. Perhaps this is the brand known among American daguerreotypists as “French Star.”

JONES & CO
N.Y.
JONES (Rinhart n.28)
American platemaker active in New York, ca. 1848-1849.

KILBURN
William Edward Kilburn (1819-1891) was one of the earliest daguerreotypists in London. He had opened his studio at 222 Regent Street, London, on February 1847 and made the first daguerreotype portraits of Queen Victoria and her family in April 1847.
Appointed “Photographist to Her Majesty and His Royal Highness Prince Albert”, Kilburn's portraits, as a rule finely hand-colored, were greatly appreciated by aristocrats and members of British high society.
Kilburn's studio was later moved to 234 Regent Street where he produced daguerreotype until the early years of 1850 and ceased to operate in 1862.
**L.B.B. & Ce**

**LBB&CE** (Rinhart n.31)
Positive hallmark “L.B.B. & Ce” usually coupled with the 20 and 40 silver mass 20 type 20MARI e 40MARI-1. Perhaps French producer, active around years 1840-1843.

---

**GUSTAVE LEGRAY.**

**LEGRAY**
Daguerreotype hallmark of the French photographer Gustave Le Gray, (Villiers-le-Bel, 30 August 1820 - Cairo, 30 July 1882).
Mark imprinted on plates around 1848.

---

**LEREBOURS**
Noël Marie Paymal Lerebours was in partnership with Marc Secretan.
Producer and dealer of photography supplies. Manufacturer of optical and scientific instruments at n.13 in Place du Pont-Neuf.

---

**L.G. 40**

**LGD40I** (Rinhart n.34)
**L G Dotted 40 Inscribed.**
‘L.G.’ initials, 40 mass value, inscribed in rectangle.
“L.G. 40” hallmark not further identified, about 1855.
LLETEN
L L E T t e r E N g r a v e d.
‘L’ letter engraved with a positive hallmark directly impressed on the back of the daguerreotype plate, not silvered side.
Unidentified platemaker, ca. 1845.

LLLEDE
L L L L e t t e r s D o t t e d E n g r a v e d.
Initials ‘L.L.’ engraved with a direct positive hallmark.
Mark detected in the European area.

MACHTS
Franz Machts, Wien.
Machts was a Viennese silversmith. Years around 1842.

MADELAN
Madelain brand.

MAGIC (Rinhart n.37)
Hallmark of “MAGIC” brand. American platemaker, ca. 1855.
MARERD (Rinhart n.11)
Magen ARI es ER Doublé.
Magen (Jewish Star) and ram flanked by the letters ‘E’ and ‘R’, DOUBLÉ.
Negative hallmark similar to the next three signs, 1858 ca. The intertwined lines of the six-pointed star are in relief on a lowered background. Associated with the code 30MAIR-2 code.

MARJW D (Rinhart n.30)
Magen ARI es J W Doublé.
Magen (Jewish Star) and ram flanked by the letters ‘J’ and ‘W’, DOUBLÉ. Hallmark very similar to MARERD. The mass value always appears to the right of the sign. After 1855. Hallmark coded on the basis of Rinhart's indications in “The American Daguerreotype.” Not yet encountered by the authors of this book.

MARNWD (Rinhart n.30 variant)
Magen ARI es N W DOUBLÉ.
Magen (Jewish Star) and ram flanked by the letters ‘N’ and ‘W’, DOUBLÉ. Hallmark very similar to MARERD. After 1855. Hallmark coded on the basis of Rinhart's indications in “The American Daguerreotype.” Not yet encountered by the authors of this book.

MARPLD
Magen ARI es P L Doublé.
Magen (Jewish Star) and ram flanked by the letters ‘P’ and ‘L’, DOUBLÉ. Hallmark very similar to MARERD. The mass value always appears to the right of the sign. After 1855.
**Hallmarks**

**MAYALL**  
John Jabez Edwin Paisley Mayall (1813 – 1901) was an English photographer. He started handling daguerreotypes from 6 January 1840. Mayall emigrated to America in 1842. In 1843 Mayall established a studio at 140 Chestnut Street, Philadelphia, and in 1844 entered into partnership with Samuel Van Loan. On June 1846, Mayall sold his studio to Marcus Aurelius Root and returned to England where he worked for a short time with Antoine Claudet. In 1847, Mayall had established his own daguerreotype studio at 433 West Strand, London. In 1852, Mayall opened a second establishment in London at 224 Regent Street. Mayall was a pioneer and inventor and in 1855 patented his Artificial Ivory for photographic pictures.

**MARTIN**  
Probably American daguerreotypist. The Craig’s Daguerreian Registry reports several daguerreotypists with this surname active in the 1850s. Tiny dimensions: approximately 2.5 x 0.5 mm.

**Mc CLEES & GERMON**  
MCCLGE (Rinhart n.36) 
MC CLees & GErmon. Positive hallmark of “McCLES & GERMON”, daguerreotypists in Philadelphia in the years 1847-1850.

**MDDDI** (Rinhart n.35) 
MEADE BROS IMPORTERS N-Y.

MEADE-1
Meade Brothers Importers, New York. The brothers Charles and Henry Meade, Albany, NY, were in business from 1842 as importers and dealers of photographic supplies in New York from. Hallmark: years 1850-1858.

MEADE-2
Meade Brothers Importers, New York. Daguerreotype hallmark variant 2.

J.G. MOFFET N.Y.

MOFFET
J.G. Moffett started his business in 1841 as supplier of photographic materials and importer of daguerreotype plates at n. 121, Prince Street, New York City, N.Y. In 1850 he was registered as a manufacturer of daguerreotype plates, mats and preservers for daguerreotype cases, in Bloomfield, New Jersey.

A.B. MORTLEY UTICA N.Y.

MORTLEY
Abram B. Mortley, initially a dealer of daguerreotype supplies, later operating as manufacturer, worked in Genesee Street, Utica, New York. It was active between 1848 and 1853.

MSDRIN (Rinhart n.38)
Initials “M.S.” with dots inscribed in rectangle with clipped corners. The noted hallmark has a pretty different shape from that represented by Rinhart. American daguerreotype platemaker, early 1850s.
Myron Shew was a supplier of daguerreotype materials listed from 1849 to 1852 in Philadelphia, Pa., at 116 Chestnut Street. From 1853 to 1857 at n.118 and from 1858 to 1859 at n.322 Chestnut Street. Probably active until 1860.
N&WRIN (Rinhart n.39)
**N & W** Rectangle **INscribed.**

NAUDIN
Naudin F. was a silversmith specialized in the production of “Plaqué et Doublé” plates. It was active from 1840 ca. Workshop in rue de Montmorency, 14, Paris. Manufacture of plates for daguerreotype up to 1853 ca.

ALP. NINET

**NINET**
ALP. NINET.
Direct positive daguerreotype hallmark of Alphonse Ninet.

Parisian daguerreotypist operating in the early 1850s at n.37, rue de Lille. He later moved to n. 38, rue Quincampoix.

Ninet made a valuable collection of stereoscopic views. He was the author of the manual: «Méthode pratique pour apprendre sans maître la photographie sur collodion pour obtenir sur papier des portraits et des vues sans retouché», published in Paris in 1853. The 16-page booklet shows that in 1853 Ninet had already switched over to the collodion process.

**NINET N°**

**NINETN**
**Ninet N (1?)**
Embossed hallmark observed only once and incomplete. Dimensions: 5x1 mm.
NO1DIT (Rinhart n.40)
**N° 1 Dotted Inscribed Textured.**
Negative hallmark with ‘N° 1’ and a dot externally displaced to the right, inscribed in rectangle with argyle background.
May be the daguerreotype plate well-known among the American daguerreotypists as “Number One” and produced in the 1850s.

NO10IT
**N° 10 Inscribed Textured.**
Hallmark with ‘N° 10’ inscribed in rectangle with argyle background.
Very close to NO15IT. Probably an American daguerreotype platemaker.

NO15IT
**N° 15 Inscribed Textured.**
Hallmark with “N° 15” inscribed in rectangle with argyle background.
Very close to NO10IT. Probably an American daguerreotype platemaker.

NORTON (Rinhart n.41)
Hallmark “NORTON”, inscribed in rectangle.
J.W. Norton, active at n.447, Broome St., New York, ca. 1855-1857.
NP40OD
N P 40 Octagon Dotted.
Negative hallmark with the initials “N.P.” and mass value 40 enclosed in elonged octagon. Probably an American platemaker.

NP40OI (Rinhart n.42)
N P 40 Octagon Inscribed.
Squeezed up initials ‘NP’, sign “=” and mass 40, inscribed in an elongated octagon. Daguerreotype plates probably produced by Lerebours, Paris, Place du Pont-Neuf 13, atelier in Rue de l’Est 23. Dealer in London was Claudet. The company was founded in 1789 by Noël Jean Paymal Lerebours (1761-1840). His son Nicolas Noël Marie Paymal (1807-1873) succeeded him and continued as N.P. Lerebours until 1845, then in partnership with Marc François Louis Secretan (1804-1867).

PECKS PATENT
APRIL 30 1850
PECKS
PECKS PATENT - APRIL 30 1850. Positive hallmark, consists of two parts, each of which was commonly transversally impressed on the two corners of the plate. Years immediately following 1850. Size: ca. 8 x 3.8 mm. - 10 x 3.8 mm. Samuel H. Peck was a daguerreotypist active in New Haven from 1844. This date match the registration of his patent for a famous polishing clamp for daguerreotype plates. Later Peck was in partnership with Scovill Manufacturing Co.

PEMBERTON & CO. CONN.
PEMBERTON (Rinhart n.43)
Linear positive hallmark “PEMBERTON & Co CONN.” William M. Pemberton manufactured rolled plate metals and daguerreotype plates in Newark, N.J., from 1852 to 1860.
**PHOENIX**  (Rinhart n.44)
Negative hallmark “PHOENIX”, enclosed in serrated box.
American brand, years ca. 1848-1856.

**plet**

**PLETEN**

P LETter ENgraved.
‘P’ letter engraved with a positive hallmark directly impressed on the back of the daguerreotype plate, not silvered side. Size: 2.5 x 3.0 mm.
Unidentified platemaker, ca. 1840.

**JOHN PLUMB**

**PLUMB**
John Plumb was active as daguerreotypist in the years following 1840 at n. 251, Broadway, N.Y. He invented a method to copy daguerreotypes.

**PLUMBE-1**
Plumbe, variant 1.
John Plumbe Jr. was a daguerreotypist in Boston since 1840. Later he expanded the business to manage several photographic establishments in the major US metropolises of the time. This hallmark appears to refer to the years immediately after 1845. Plumbe committed suicide in 1857 due to insolvency and related to the frustration of one of his greater dreams: to build a transcontinental railway from the Atlantic to the Pacific.
Hallmarks

PLUMBE

PLUMBE-2
Plumbe, variant 2. Probably pre 1845.

POIRIER
Daguerreotypist working in Bordeaux between 1850 and 1860.
From an advertising leaflet: « ÉTABLISSEMENT POIRIER, Place de la Comédie, 3, en face le Grand-Théâtre. Portraits au Daguerreotype sur plaque. Photographie sur papier. Leçons sur tous les procédés. »

RAMON
Daguerreotypist active in Paris in the 1850s.
From an advertising leaflet:
« Pictures on Plate and on Paper. RAMON. Rue Saint-Antoine, N° 123, in front of St. Paul Street. B&W and colored portraits. In the atelier we have a special operator for post mortem portraits. PARIS. »

RICHEBOURG
Pierre Ambroise Richebourg (Parigi 1810-1872) was an early distinguished Parisian daguerreotypist.
He made photographic portraits since 1839.
In 1843 he published a manual for daguerreotype process. Linear hallmark: “Daguerreotype Richebourg a Paris Quai de l'Horloge 69.”
The inscription occupies the full upper edge of a ¼ daguerreotype plate.
This is the atelier address of Charles Chevalier, optician friend of Daguerre. Richebourg was an engineer at Chevalier for a decade.
He produced numerous large daguerreotypes designed to serve as a model for printed engravings.
DOUGERREOPE hallmarks

ROOSTER
Negative hallmark with rampant rooster enclosed in vertical oval.
European area hallmark, from around 1850.

ROUSSEAU
Positive linear hallmark “J. ROUSSEAU & C°”. American, years ca. 1850.

S&FEND (Rinhart n.45)
S & F ENclosed in Diamond
Negative hallmark with initials “S & F” enclosed in rectangle.
America brand ca. 1850-57 circa.
Here we can see an example of a partial hallmark.

SBDPFL
S B, Dotted, Plus, FLourished.
Initials ‘S’ and ‘B’ dotted, to the sides of a ‘+’ sign, arabesque embellishing.
Positive direct hallmark found in the American area, perhaps after 1850.

SBLETTE
S B LETtErs.
Positive hallmark directly engraved with initials ‘S’ and ‘B’.
Jean-Baptiste Sabatier-Blot (1801-1881) began as miniaturists painter in Paris, Palais-Royal gallery n.52. In 1842 he opened a photographic studio at n. 137. In 1844 he executed at least two photographic portraits to his friend Louis Daguerre. He successfully operated as “Peintre en miniature, réalisant des portraits au daguerréotype” until late 1850s. Then he changed to the collodion process and printing on paper. Here we can see the hallmark imprinted on a daguerreotype plate in original mounting signed in pen “Sabatier-Blot, Palais-Royal 137”.


SCHNEIDER
Hallmark stamped on the back of the plate. The hallmark on the front, silvered side of the plate takes the form “FR. SCHNEIDER” in capital letters, no address.
SCOVILLS-2 (Rinhart n.46b)
Scovills, variant 2.
The daguerreotype hallmark “SCOVILLS N ° 2” was used for the most commercial plates, around 1841-1846.

The hallmark simply written “SCOVILLS” date back to the years between 1840 and 1850, period during which William & Lamson Scovill marked their plates using the form of the Saxon genitive “Scovills.” Scovill began in Waterbury, Connecticut, in 1802.

In the early years the company devoted itself to the production of brass buttons. At the end of 1839, J.M.L. Scovill and W.H. Scovill began the first production of silver plates in the United States.

Scovill was already well established in the production of brass buttons, gilded jewellery and other copper accessories. The company possessed therefore all the productive capacities to immediately begin the manufacture of the daguerreotype plates. J.M.L. Scovill, in December 1839, stated:
« The Frenchman here says the plates cannot be made here and he calculates to make a fortune by importing them from France.. we will try to disappoint him. »

During the 1840s, Scovill succeeded in making plates of the same quality as those arriving from Paris.
In 1846, the company opened a resale in New York, on Beekman Street. The store soon became the largest commercial warehouse for photography products in the United States.

In 1850 Scovill became a public company, listed on the stock exchange under the name of Scovill Manufacturing Company. From that year the plates were marked as “SCOVILL MFG - EXTRA.” Scovill later also established commercial agreements with Samuel Peck for the production of daguerreotype cases. Scovill had a fierce rival in Edward Anthony, another New York producer and dealer, famous at the time of the daguerreotype process.

In 1867 the Scovill Company acquired the American Optical Company, that produced box cameras, stereoscopes and accessories. In 1889 Scovill company joined with the Adams Company and in 1902 also absorbed E. & H.T. Anthony Company. Finally, in 1907, it assumed the abbreviated name ANSCO, continuing for decades to produce materials for photography. Scovill today is a leading company in the production of automatic buttons: practically a return to its origins.
**SCOVILL MFG. CO.**

**SCOVILLS-1** (Rinhart n.46a)

Daguerreotype hallmark “SCOVILLS”, variant 1. Size: 1.0 x 9.8 mm.

Scovill was the most important American producer, along with Anthony, throughout the daguerreotype period. This hallmark was used during the early production period, in the 1840s. Imprints without the final “s” have been noted, but it could be a punching failure, not an actual variant.

**SCOVILL** (Rinhart n.46c)

SCOVILL MFG C°. EXTRA.

Hallmark on Scovill daguerreotype plates, 1850s. 3.5 x 13.0 mm.

**SPIRO**

Daguerreotype platemaker active in Hamburg. Years before 1850. Plates with distribution limited to Central Europe.

**STARS3**

Daguerreotype hallmark consisting of three stars. Unknown American platemaker. Probably a late daguerreotype plate, 1858 ca.

**START3**

STARs Triangle 3

Daguerreotype hallmark consisting of three stars arranged in the shape of a triangle. Unknown American platemaker. Probably a late daguerreotype plate.

**TVIOLG**

T VIOLin G

Daguerreotype hallmark consisting of initials ‘T’ and ‘G’ divided by a violin figure and dominated by the word “DOUBLÉ.” Hallmark seen in the Belgian area and in Eastern Europe.


**VAILLAT-1**

VAILLAT, variant 1.
Variant 1 of the Vaillat stamp, French daguerrotypist.

---

**VAILLAT-2**

VAILLAT, variant 2.
In 1845 Eduard Vaillat, optician and daguerreotypist, opened a successful atelier at Palais Royal no. 43, Galerie Montpensier, in Paris. He exhibited in the exhibitions of industrial products of 1844 and 1849. Léon de Laborde reported in 1849 that Vaillat formed a large number of students in photographic art. Vaillat worked at least until 1855, the year in which Ernest Lancan wrote in “Esquisses photographiques”: « ... he holds a worthy place among the firsts of the highest rank. His plates have the force of tone and brilliance that distinguish them among the best. » He was a founding member of the Société Française de Photographie in 1854 (together with O. Aguado, Hippolyte Bayard, E. Durieu, J.-B. Gros, Gustave Le Gray, H.-V. Régnault and others).

---

**VLFLAM**

V Letter FLAMing.
Hallmark consisting of a flaming letter ‘V’. 2.5 x 2.5 mm.
Unknown European daguerreotype platemaker.

---

**WCROHI**

W CROwn Hexagon Inscribed.
Hallmark consisting of a letter ‘W’ dominated by a crown.
Hallmark noted on daguerreotype plates of North European origin.
Edward White, was a daguerreotypist and a daguerreotype platemaker active in New York in the years between 1842 and 1851. He also worked as a photographer with studios in New York and New Orleans.

In the years 1841-1842 he was registered as a manufacturer of “morocco cases” for daguerreotypes at n. 183 Brodway, New York.
In 1843-1844 White worked at n. 175 and n. 281 Brodway.

He was registered as daguerreotypist and dealer, sole agent for Voigtlander products. At the same address, upstairs, he opened the “U.S. Daguerreotype Gallery.” In 1846 he took over the “Johnson's Southern Daguerreotype Portrait Gallery” in New Orleans.

In 1848 White moved to 247 Brodway, at the same address as Anthony, since he had taken over the “Anthony's National Miniature Gallery.” E. White produced daguerreotype plates from the beginning of 1844 until the end of his activity in 1851.
**E. WHITE MAKER N.Y.**  
**SECOND QUALITY**

**WHITE-2**  
E.WH.ETE MAKER N.Y. / SECOND QUALITY  
Daguerreotype hallmark of Edward White, N.Y, used for the cheaper plates of most ordinary quality. 1845-1849 ca.

![Hallmark Image]

**WRMANP** (Rinhart n.20b)  
WReath MAN Portrait.  
Male bust inserted in wreath with double oval.  
Hallmark noted on plates approximately from the period of 1854-1859.

**XAVIER**  

**ZOA**  
**GARANTIE**

ZOA (Rinhart n.50)  
Hallmark of French manufacturer. Noted on plates produced around the year 1850. It appears associated with the GARANTIE hallmark.
Sixth-plate daguerreotype. Actual size: 66 x 78 mm.
Hallmark: lower left, BALCCD (Christofle).
Origin: Lebanon, Maine, U.S.A.
Sixth-plate daguerreotype. Actual size: 69,2 x 82 mm.
Hallmark: lower left, SCOVILLS.
Origin: Warren, Maine, U.S.A.
Sixth-plate daguerreotype. Actual size: 69.7 x 82.3 mm.
HALLMARK: top and to the right SCOVILL MFG co (bow) EXTRA.
An extremely rare example of a daguerreotype in which the sitter is smiling.
Quarter-plate. Resilvered plate. Actual size: 96.50 x 128 mm. Hallmark: top and to the left, BALCCD (BALance, CC in Diamond). Origin: Figeac, Midi-Pyrénées, FR.
Contributors

We are thankful to the collectors or institutions who made available the scans of the hallmarks present on the daguerreotypes in their collections.

20MAAS, AGDO30, ANRH30, BLUMBE, BMONOG, BUTLER, EAGLEC, EEREVE, GOUIN, JB&C30, MARTIN, NINETN, SCHNEIDER, WHHDIN-2  ....... Christopher Wahren

KILBURN, MAYALL ..................................................... Jason Wright

ANCHGD ................................................................. John S. Rochon

SBLETE ................................................................. Marco Cimini

40 MAMI ............................................................... Mihai Stănescu

EAGLEB, EXCELSIOR, MSDRIN  ................................. Terry Alphonse

PLUMB ................................................................. Thomas Kennaugh

VAILLAT-2 ............................................................. Wouter Lambrechts

DUBRAY ................................................................. Musei civici di Imola

The scans of all other hallmarks in the book come from Chiesa-Gosio collection.
Bibliography


Daguerreotype hallmarks

About Autors

Gabriele Chiesa


Gianpaolo Gosio

has carried out decades of professional activity in a major Italian publishing house, taking care of the various aspects of the production of the image, until he became a competent lover of history and printing techniques. Co-author of “Dagherrotipia, Ambrotipia, Ferrotipia Positivi unici e processi antichi nel ritratto fotografico”. Provides collection advice and expertise. He dedicates himself to collecting and studying in the field of photographic portraiture and image plates.

© 2020 by Gabriele Chiesa & Paolo Gosio. Some Rights Reserved.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

http://www.gri.it
http://www.fotocollezione.it
http://storiadellafotografia.blogspot.com
Table of contents

Acknowledgements ................................................................. pag. 4
Introductory note from the authors ........................................ pag. 5
Imprint and picture .................................................................. pag. 6
An invention born at the window ............................................. pag. 7
Niépce’s window ..................................................................... pag. 8
Daguerre’s window ................................................................. pag. 11
Talbot’s window ...................................................................... pag. 15
Herschel’s window ................................................................. pag. 18
The daguerreotype rule ........................................................... pag. 20
The daguerreotype ................................................................. pag. 23
THE DAGUERREOTYPE ......................................................... pag. 29
Daguerreotype plate sizes ....................................................... pag. 39
Preservation ............................................................................ pag. 44
Daguerreotype Hallmarks ....................................................... pag. 47
Hallmark identification .......................................................... pag. 52
Contributors ........................................................................... pag. 108
Bibliography ........................................................................... pag. 109
About Autors .......................................................................... pag. 110
Table of contents ..................................................................... pag. 111
Gabriele Chiesa e Paolo Gosio

*Daguerreotype hallmarks*

112 pp. B5, 176 x 250 mm

© 2020 by Gabriele Chiesa & Paolo Gosio. Some Rights Reserved.

This work is licensed under a Creative Commons *Attribution-NonCommercial-NoDerivatives 4.0 International License.*

The hallmarks reproduced on the cover, as well as all the illustrations in this book, come from the Chiesa-Gosio collection.
Layout, graphics and texts by Gabriele Chiesa. The provided illustrations are property of the authors except the hallmarks scans listed at pag. 108.
The reproduction of the daguerreotype “Boulevard du Temple” by L.J.M. Daguerre is an electronically processed version of the file declared as public domain on https://it.wikipedia.org/wiki/File:Boulevard_du_Temple_by_Daguerre.jpg

Finished composing in Brescia, Italy, the April 6th, 2020. 200th anniversary of the birth of Gaspard-Félix Tournachon (Nadar).

http://www.gri.it
http://www.fotocollezione.it
http://storiadellafotografia.blogspot.com